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ABSTRACT
Many network functions are moving from hardware to soft-
ware to get better programmability and lower cost. Measure-
ment is critical to most network functions because getting
detailed information about traffic is often the first step to make
control decisions and diagnose problems. The key challenge
for measurement is how to keep a large number of coun-
ters while processing packets at line rate. Previous work on
measurement algorithms mostly focuses on reducing mem-
ory usage while achieving high accuracy. However, software
servers have plenty of memory but incur new challenges of
achieving both high performance and high accuracy. In this
paper, we revisit the measurement algorithms and data struc-
tures under the new metrics of performance and accuracy. We
show that saving memory through extra computation is not
worthwhile. As a result, a linear hash table and count array
outperform more complex data structures such as Cuckoo
hashing, Count-Min sketches, and heaps in a variety of sce-
narios.
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1 INTRODUCTION
To reduce the cost and management complexity of hardware
switches and middleboxes, there is a growing need of mov-
ing network functions to software. For example, today, data
centers often run load balancing and firewalls in software
[52, 58], and ISPs have started to deploy virtualized network
functions (VNFs) to replace their hardware boxes [4].

Measurement is a key component in many network func-
tions: for detecting anomalies (e.g., heavy hitters, superspread-
ers), profiling traffic of applications, or inspecting individual
packets (DPI). Other network functions such as load balanc-
ing and traffic engineering also rely on accurate measurement
of traffic statistics [14]. Measurement tasks can run on bare-
metal, e.g., a software switch [53], or inside containers either
standalone or as part of another NFV, e.g., a load balancer
container that detects and spreads heavy-hitter flows across
all the backend servers [36].

To support measurement functions, we need to keep a large
number of counters for individual packets and flows. There-
fore, most measurement algorithms focus on how to store
many counters with limited memory while retaining measure-
ment accuracy, at the expense of more hash functions (e.g.,
Cuckoo hashing [51] and Count-Min sketch [22, 47]) or more
computations (e.g., heaps). Even some recent proposals focus-
ing on software measurement also target reducing memory
usage [23, 31, 35, 48, 55, 59].

However, we argue that, in software, the key metric is
not memory usage, but packet processing performance (i.e.,
throughput and latency). This is because modern servers have
plenty of memory, an efficient caching hierarchy, and highly
optimized compilers. Instead, the key challenge is to achieve
high throughput and low latency. If we spend too many CPU
cycles to fetch measurement data into cache and compute
the right values and locations for counters, we may delay the
packet processing and affect throughput. Note that the tail
latency also matters because even if a few packets experience
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long delay, the queue size increases which causes packet
drops.

In this paper, we re-evaluate measurement algorithms in
software with a focus on performance and accuracy metrics.
We study three measurement tasks (heavy hitters, superspread-
ers, and change detection) on a variety of measurement algo-
rithms (including hash tables, sketches, and heaps). Our key
observations are:

1. We show that saving memory through extra computation
is not worthwhile in achieving high performance and high
accuracy for measurement in software. For example, using
more hash functions in Cuckoo hashing or a Count-Min
sketch provides worse performance than a linear hash table
or a count array. Using more computationally intensive
data structures (e.g., heaps) also hurts performance. In-
stead, to improve the accuracy, one can simply allocate
larger memory to simple linear hash table or a count array
while still achieving better performance than the other data
structures with more computation. (Section 3)

2. Our conclusion holds for heavy hitter detection and other
measurement tasks with different memory access patterns
(superspreader detection) and more complex computation
(change detection). It also holds for measurements with
different entry sizes, value sizes, and traffic skews. (Section
4)

3. On a multicore setting, it is a bad idea to save memory by
sharing resources across cores. Instead, we should main-
tain separate data structures across cores to avoid synchro-
nization and aggregate the results during the reporting time.
(Section 5)

In addition to the above observations, we discuss possible
ways to improve measurement algorithms in software in Sec-
tion 6. We describe related works in Section 7 and conclude
the paper in Section 8.

2 BACKGROUND AND MOTIVATION
To support various network functions, we need a variety
of measurement tasks such as heavy hitter detection, traf-
fic change detection, and flow size distribution estimation.
We observe that most of these tasks are often implemented
using three classes of algorithms (Table 1). In this section,
we give some backgrounds on these measurement tasks and
algorithms and their design principles. We then motivate why
it is important to re-evaluate these algorithms in the software
context.

2.1 Three classes of measurement algorithms
We consider three classes of measurement algorithms: hash
tables, sketches, heap/tree-based solutions. To illustrate their

design principles, we take heavy hitter detection as an exam-
ple. We define a heavy hitter as a source and destination IP ad-
dress pair that sends traffic volume more than a pre-specified
threshold. Heavy hitters are very useful for many manage-
ment tasks. For example, operators can collocate chatty VMs
(source-destination pairs with heavy traffic) in the same server
or rack to save network bandwidth in data centers.

Hash tables: Hash tables compute a hash function for each
key and use the result to locate a bucket in the array to store
the key and its value. To handle hash collisions, many hash
table designs such as linear hashing, Cuckoo hashing [51],
or hopscotch hashing [33] probe a set of additional buckets
to identify an empty bucket to hold the key. When the hash
table has a high occupancy rate (load factor), finding an empty
bucket takes multiple probing rounds, which leads to high
packet processing delay and delay variance. We compare
Cuckoo hashing that is commonly used for software switches
[7, 64] to the linear hash table.

For heavy hitter detection in the hash table, we use the
source and destination IP pair as the key and count the num-
ber of packets for each pair. A pair is a heavy hitter if its count
is above a certain threshold. The implementation details of
the hash table may affect the packet processing performance
significantly [9]. To speed up the hash table, we applied sev-
eral system optimizations such as cache prefetching, cache
access alignment, and SIMD instructions to calculate the hash
function.

Sketches: Sketches are summaries of streaming data to
approximately answer a specific set of queries. For example,
Count-Min sketch [22] is commonly used to find heavy hitters
[21, 49, 50] 1. A Count-Min sketch keeps a two-dimensional
array of counters with d rows and w columns. It computes d
hash functions per packet and updates the corresponding d
positions in each row. To find the counter for a given IP pair,
the minimum counter in the d locations is returned because
it has minimum collisions. If the minimum counter is above
the threshold, we add the IP pair to a set. Later at the report
time, we report the set of IP pairs as heavy hitters. In contrast,
a count array sketch computes one hash function per packet.
When there are hash collisions, a count array simply adds up
the counters for the collided keys.

Heaps and trees: Heaps reduces the memory usage by
only keeping the most important entries for the measurement
query (e.g., big flows). For example, the SpaceSaving algo-
rithm [47] finds heavy hitters by tracking the volume of traffic
from IP pairs in a small hash table. When the hash table gets
full, it finds the entry with the minimum volume, say vmin,
replaces that with the new IP pair, and adds the packet volume
to the original counter (vmin plus the size of the new packet).

1The conclusions of this paper is easily extensible to other sketches.



Function Meaning Sketch Heap/tree-based Hash table
Heavy hitter A traffic aggregate identified by a packet header field

that exceeds a specified volume
NSDI’13[61]
[22]

[47, 48], ANCS’11 [38] SIGCOMM’02[29]

Super spreader A source IP that communicates with a more than a
threshold number of distinct destination IP/port pairs
(Defined for destinations in a similar way.)

NSDI’13[61]
[23]

IMC’10 [56], [59]

Flow size distri-
bution

The distribution of sizes of flows distinguished by a
set of packet header fields

[42] IMC’10 [56]

Change detec-
tion

A drastic change of volume/# packets from a traffic
aggregate compared to a prediction model

IMC’04 [55]
[19]

[63] IMC’10 [56]

Entropy estima-
tion

Entropy (A measure of randomness/diversity) of vol-
ume/# packets from different flows

[45] IMC’10 [56], SIG-
METRICS’06 [43]

Quantiles Dividing an ordered set of flows (e.g., based on source
IP) into equal-weight subsets

[60] SIGMOD’01 [31], SIG-
MOD’99 [46],[22]

Table 1: A survey of proposed measurement solutions

To find the minimum entry, we need to keep a heap data struc-
ture [47]. Thus for each entry in the hash table, there is a
corresponding entry in the heap, and for each packet, the heap
must be updated to maintain its property.

Trees are also used to store a hierarchical set of counters
[38, 49, 63]. For example, to detect heavy hitters, we can
build an IP prefix tree and dynamically zoom in and out the
subtrees based on the monitored traffic counters to reduce the
number of monitored prefixes.

2.2 Previous works on measurement
algorithms

Many previous works on measurement algorithms [19, 22, 27–
29, 38, 43, 56, 59, 61, 63] promote the sketch-based solutions
which maintain approximate counters with compact memory
by leveraging multiple hash functions. This idea fits hardware
switches which typically have limited high-speed memory.
However, in software with a memory hierarchy, the total
memory usage does not matter, but the number of memory
accesses at different levels of the cache hierarchy affects the
packet processing latency and throughput. As a result, it is not
worthwhile to reduce the total memory usage at the expense
of more instructions for calculating additional hash functions
and more time to access extra entries. In fact, we will show
in our evaluation that if we can reduce the number of hash
functions and memory accesses, we can still achieve low
latency and high throughput with a large total memory.

Unfortunately, even previous measurement works that tar-
get software environments [23, 31, 35, 48, 55, 59], only com-
pare the different set of sketch and heap solutions and focus on
the comparison of total memory usage. Some papers [21, 47]
that compare hierarchical Count-Min sketch and heap-based
solutions show that heap-based solutions can achieve better
performance and accuracy. Other papers claim to achieve
reasonable performance without rigorous testing on modern
servers and comparison with single hash-based solutions.

Instead, in this paper, we focus on a systematic comparison
of both the performance and accuracy of hash tables, sketches,
and heaps through extensive evaluations. We conclude that
simple is often the best. For example, the simplest implemen-
tations of hash tables and sketches (i.e., the linear hash table
and the count array) achieve the best performance and accu-
racy for heavy hitter detection. We also extend the evaluation
to other measurement tasks and over different traffic traces.

3 EVALUATION OF MEASUREMENT
ALGORITHMS IN SOFTWARE

Our key observation is that saving memory through extra
computation is not worthwhile in achieving high performance
and high accuracy for measurement in software. This is be-
cause packet batching and memory prefetching can mask the
memory access latency. On the other hand, the latency due to
extra computation cannot be masked as easily—superscalar
processors and compilers already perform efficient interleav-
ing of instructions and utilize the computation resources as
much as possible.

We noticed two common approaches that use more com-
putation to save memory: more hashes and complex data
structures: (1) Computing multiple hashes to save memory
degrades performance. For example, a count-array that uses
a single hash function and large memory beats a Count-Min
sketch that uses a smaller memory but makes up for accuracy
loss by using multiple hashes. Also, the linear hash table has
lower average and tail latency than the Cuckoo hash table
that saves memory using multiple hashes. (2) It is possible
to achieve the accuracy of more computationally intensive
data structures by allocating more memory to simpler data
structures while achieving better performance: we compare
data structures based on sketch, hash table, and heap.

We start by evaluating measurement algorithms for heavy
hitter detection in a single-core setting, and then we extend the
result to other measurement tasks in Section 4 and multicore
settings in Section 5.
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Figure 1: Comparing a single hash function with multiple ones

3.1 Evaluation settings
Testbed: We use a Xeon E5-2650 v3 processor with 10 cores,
256 KB of L2 cache per core, 25 MB of shared L3 cache,
and a 10G network interface card. On this processor, the L1
access time is 1.6 ns, L2 access time is 5 ns, L3 is 15 ns, and
main memory is 69 ns [5]. Typically, the access time of L1,
L2, L3, and main memory follows similar trend across the
latest CPU architectures [10].

Traffic traces: We use a one-minute trace from Equinix
data center at Chicago from CAIDA [3] with 27 million pack-
ets and around 1 million unique flows. The CAIDA trace has a
skew of Z=1.1 (which means that the most frequent entry has
10 times more packets than the 8th most frequent one [24, 41]).
To generate traffic traces with different skews, we build a pool
of source and destination IPs from the base CAIDA trace and
sample from this pool using a Zipfian distribution.

In all experiments, we use the smallest TCP packet size,
i.e., 64 bytes, to stress-test the measurement tasks under the
highest possible per packet rate.

Measurement tasks: We focus on heavy hitter detection.
We define heavy hitters as the source and destination IP pairs
that have more than 0.1% of the total traffic in an epoch. We
report in epochs of 2 million packets, which translates to
a 130ms time window on a 10Gbps network interface card
with 64-byte packets. We evaluate the generality of our ob-
servations for tasks that save more information per flow by
evaluating heavy hitter detection with a variety of value sizes.

Measurement algorithm implementation: We evaluate
three types of measurement algorithms: hash tables including
linear hash tables and Cuckoo hash tables, sketches including
count arrays and count-min sketches, and heaps (§2.1). By
default, we keep the keys as source and destination IP pairs
and the values as 12 byte counters. For each algorithm, we
do not implement unnecessary features (e.g., for heavy hitter
detection, we do not need to perform bookkeeping or have
a decrement operator). This decision lets us save as many

cycles as possible for each algorithm. We now describe our
algorithm implementation in detail:

Hash tables: Our implementation of linear hash table
holds one item per bucket and performs linear search on col-
lisions. There are also other collision resolution techniques,
e.g., Hopscotch [33] or Robin Hood hashing [18]. We opted
not to use them, because as the size of the data structure in-
creases the number of collisions decrease, which hides the
impact of collision resolution strategy for packet processing.
For Cuckoo hash table, we followed DPDK implementation
[6] but removed the bookkeeping (required for deletion) to
improve the performance.

Sketches: Count-array implementation is similar to the
linear hash table, but instead the collision resolution strategy
overwrites previous values. Our Count-Min sketch uses three
count-arrays with pairwise independent hash functions.

Heaps and trees: We use a binary min heap as a repre-
sentative tree like data structure for packet processing that is
actively used across many algorithms, e.g., change detection
[63], heavy hitter detection [47, 48]. We optimized the im-
plementation by ensuring that we only heapify-down when
updating values because the flow metrics, e.g., volume or
packet count, can only increase.

We perform extensive system optimizations to make the
measurement system as efficient as possible. For example, we
use DPDK [6] to read packets from the NIC and send them as
a batch to the application. Batching packets has several ben-
efits: (a) it gives the compiler more freedom to optimize the
code, e.g., through data-flow analysis [40], (b) it enables the
instruction level parallelism across packets in the same batch;
and (c) the compiler and the programmer can use prefetching
and Single Instruction Multiple Data (SIMD) instructions to
hide the latency of memory and CPU operations [32, 54].

Evaluation metrics: We consider two metrics: (1) Perfor-
mance: We measure the average and tail latency (i.e., 99th
percentile latency). We measure the latency from fetching
packets from the NIC to sending the packets out of the mea-
surement module and maintain the histogram. The average



latency dictates the packet processing throughput. The tail
latency indicates the variance of packet processing time. A
larger tail latency causes more packet drops because the NIC
needs to maintain a longer queue. Note that this can happen
even when the average latency per packet is low. (2) Accuracy:
We measure the precision and recall for each measurement
task. For example, to measure the precision of heavy hitter
detection, we count the fraction of selected flows that are
true heavy hitters; similarly, the recall is the fraction of true
heavy hitters that are detected. The recall and precision of
other tasks, e.g., superspreader or change detection, follow
the same definition.

Evaluation settings: We run a warm up trace right before
each experiment to ensure that the software switch code is
cached. We perform zero-packet-loss performance benchmark
[17]: for each experiment, we replay the trace at the highest
throughput where packet loss is zero.

We process packets in batches of 64. To compute the av-
erage and tail latency, as it is too expensive to record the
delay per packet, we measure the number of cycles to process
each batch and add the corresponding per packet cycle into
a histogram. The histogram has 2k buckets with each bucket
representing 2 cycles.

3.2 A single hash function is better than
multiple

We compare data structures with a single hash function to
those with multiple hash functions (linear hash table vs. Cuckoo
hashing and count array vs. Count-Min sketch). We observe
that using a single hash function achieves better performance
on average and in tail than using more hash functions without
losing accuracy.
The linear hash table has lower average and tail latency
than Cuckoo hash table. Figure 1a shows the average and
the 99th percentile latency for the linear and Cuckoo hash
tables. For the Cuckoo hash table, we first consider an imple-
mentation with one entry per bucket. For each hash bucket,
we store one key-value pair (i.e., one entry per bucket is la-
beled as Cuckoo-1 entry). The Cuckoo hash table has between
30% (40%) to 10% (13%) higher average (tail) latency than
the linear hash table over the whole range. This is because,
with lookup misses, Cuckoo hashing always needs two hash
functions to verify the miss whereas the linear hash table
always requires one. This also means that Cuckoo hashing
needs to make two random memory accesses, whereas linear
hash table only needs to probe the current entry. The locality
and predictability of reference in linear hash table and the
size of the cache sizes (64 bytes) further help to ensure the
availability of next key in cache. This makes linear hash ta-
ble have an overall better performance even with larger data
structures and when the load factor is low.

To increase the locality of reference, we may reduce the
number of memory operations in the Cuckoo hashing by
chaining, e.g., saving four entries per bucket (labeled as
Cuckoo-4 entries)[30]. Thus, when collisions happen, we
can save the entry in the same bucket with high probability
without computing the second hash. Note that we chose four
entries per bucket because the four entries fit in one cache line.
Although Cuckoo-4 improves the tail latency of Cuckoo-1, it
still has higher latency compared to linear hash table (Figure
1a). This is because with equal sized tables, there are fewer
indices available in Cuckoo-4 than linear hash table, and thus,
Cuckoo-4 can require multiple comparisons to find the key.

There is a large body of works on using Cuckoo hash tables
for applications with high performance such as forwarding
tables of switches [65] and for key-values stores [30]. Previ-
ous works choose Cuckoo hash tables because they focus on
the load factor of the hash table, but in our context, we care
less about the load factor since the number of records is much
smaller than a table for a key-value store. In other words,
Cuckoo hashing is not the fastest in our context because each
lookup may require two hash computations and an insertion
may require random shuffling of many entries in the hash ta-
ble. Instead, we can use a large table—because the table size
is only a fraction of the total memory size in modern software
switches—and avoid computations that allow Cuckoo hash
table to achieve a high load-factor.
The count array has lower average and tail latency than
the Count-Min sketch. The count array with one hash func-
tion has lower average and tail latency with the same accuracy
than Count-Min sketch, which uses three hashes, across all
data structure sizes (Figure 1b). This is because the Count-
Min sketch computes multiple hashes and needs multiple ran-
dom memory accesses per packet, which defeats the purpose
of smaller memory size for packet processing. The tradeoff
between the performance (i.e., 99th percentile tail latency)
and accuracy (i.e., precision2) is shown in Figure 1c. For ex-
ample, the count array reaches 98% precision with 45 ns tail
latency while the Count-Min sketch takes 64 ns for the same
precision due to the additional hash function computations.
Even when count array memory does not fit in the CPU cache,
most of its memory accesses are still served by the cache be-
cause of the packet batching, memory prefetching, and traffic
skews, which is common in networks [12, 13].

3.3 Use data structures with the simplest
computation

We compare three classes of algorithms for heavy hitter de-
tection: count arrays, linear hash tables, and heap-based al-
gorithms. Among the three, count array has the least amount

2Recall also has the same trend.
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Figure 2: Performance and accuracy comparison of hashes, sketches, and heaps (traffic skew Z=1.1)

of computations, linear hash table is a bit more complex be-
cause of the collision resolution strategy, and the heap-based
algorithm is the most computationally demanding but uses
smaller memory. We show that using more computation to
save memory does not improve the performance.
Count array has the lowest average latency compared to
linear hash table and heap. We first compare the average
latency of the three algorithms for heavy hitter detection for
different sizes of data structures in Figure 2a. The count array
has 142% better performance than the heap implementation
and 28% better performance than the linear hash table. Figure
2a shows that as the size of the data structure grows, the la-
tency difference between the linear hash table and count array
vanishes because collisions rarely happen.

The heap has the worst performance among the three al-
gorithms as it takes multiple memory accesses to navigate
and maintain the heap data structure. For example, updating a
heap entry with a subtree of height three may require updating
all the tree layers.

Note that heap is still faster than more complex algorithms
such as hierarchical sketches [21, 47]. Hierarchical sketches
use multiple sketches to extract the heavy hitter flow informa-
tion from their counters as counters in sketches do not keep
the flow information (e.g., IP). However, updating multiple
sketches in software requires many hash computations and
memory accesses 3.
With larger data sizes, the tail latency increases signifi-
cantly for the count array and linear hash table, but de-
creases for heap. The error bars in Figure 2a show the 99th
percentile tail latency. The tail latencies of count array and
linear hash table increase significantly when the measurement
data size is above the L3 cache of the CPU (25 MB). If the
measurement data is larger than the L3 cache, the memory
access latency affects the tail latency of the packet processing
pipeline.

3Our approach for using the count array is to simply keep heavy hitters in
a set (i.e., add the flow to a set if it updates a counter above the threshold).
Thus, we only need one sketch, and count array becomes a better choice than
the heap for software.

It is worth noting that small linear hash tables have higher
latency than the larger ones. This is due to the high load factor
of small tables that incurs additional collision resolution cost.
For example, in our experiments, a linear hash table with 3
MB performs 22% more memory accesses than a linear hash
table with 200 MB.

However, the average and tail latencies of min-heap de-
crease with more memory. This is because with larger heaps,
more heavy hitters end up in the leaves (versus nodes inside
the heap), which makes heapify operation cheap because it
only touches the leaves.
To achieve 100% accuracy, we should use the linear hash
table; if accuracy loss is acceptable, count array has the
best performance. Figure 2b compares the tradeoff between
accuracy (i.e., precision/recall) and the performance (i.e., la-
tency/tail latency) of different measurement algorithms. Even
though heap works well with small memory space, it has
the highest latency and the worst accuracy among the three
algorithms and is never a good choice for measurement in
software.

The linear hash table always achieves 100% precision and
recall because it handles collisions. Its average latency is 46ns
and its tail latency is 53ns. However, count array achieves
99.5% precision and 96.54% recall with 40ns average latency
and 46ns tail latency. Saving 6ns in average latency improves
the throughput by 9% for the smallest packet size where we
only have 67ns to process each packet ( 6ns

67ns
). The reduction in

tail latency also lowers the chance of packet drops in the NIC
queue as the maximum queue length drops. Therefore, the
count array is the best choice if the consumer of measurement
data can tolerate some accuracy loss. For example, for traffic
engineering, handling a few small flows as heavy hitters (<
100% precision) or missing a few heavy hitters (< 100%
recall) does not have much impact, especially, because the
size of false detected heavy hitters and missed heavy hitters
is close to the threshold [50].



4 GENERALITY TO DIVERSE
MEASUREMENT TASKS

We discussed that for detecting heavy hitters, large and com-
putationally lightweight data structures have better perfor-
mance and comparable accuracy to small and complex data
structures. Here, we generalize the result to a group of mea-
surement tasks that keep per item state and update that state
for every incoming packet. All the six measurements in Ta-
ble 1 follow this model. For example, heavy hitter detection
increments the per flow counters, superspreader detection up-
dates a bloom filter per source IP. Such measurement tasks
only rely on a data-structure that maps items to their state,
i.e., a key-value store. We can implement a key-value store in
software using (1) hash tables or (2) tree based algorithms.

Hash tables rely on hash functions and collision resolution
strategies to find the location of an item; on the other hand,
trees traverse a path from the root node and incur multiple
memory accesses to find the location of the item. To compare
the solutions, we need to compare the number of cycles used
to find the location of a key.

Under no collisions, a hash table requires a single hash
function to locate a key-value pair in the table. There are
many well designed uniformly random hash function imple-
mentations [8], e.g., Metrohash, Cityhash, Murmur3, which
typically take between 40~60 cycles for 16 bytes (>5 tuples)
of data to execute. In comparison, L2 and L3 accesses take
10 and 40 cycles respectively. Thus, a hash table with no
collisions takes between 50~100 cycles to locate the value
of a key. On the other hand, a tree based solution requires
multiple memory accesses (typically in the O (log(n)) mem-
ory accesses and comparisons) to find the location of a key.
Assuming the same memory access latency numbers for L2
and L3, a tree that is completely cached in L2 memory can
only have between 63~2047 entries—ignoring any computa-
tional overhead and branch mispredictions—for a comparable
performance to a hash table, which can be much larger. This
means that a hash table with no collisions has a much better
performance than tree based solutions.

The unique opportunity for network measurement tasks
is that they can avoid collisions in hash tables using large
tables. This is because the data of measurement algorithms
is a fraction of the software memory hierarchy (e.g., 10s of
MBs compared to 10s of GBs available on modern software
switches). Thus, we can make the hash tables large enough
that collisions become rare. Furthermore, we can mask the
memory access latency through packet batching and prefetch-
ing. In contrast, the database and hardware switch community
[30, ? ]], where most streaming algorithms come from, do
not have the luxury of serving most queries from cache and
thus have to rely on trading off computation and accuracy for
memory size.

Finally, different measurement tasks have different strate-
gies for updating the values associated with the keys. For
example, when using count array for heavy hitter detection,
values that map to the same bucket overwrite each other,
whereas a linear hash table would resolve collisions through
probing, and a heap would move the items around to pre-
serve the heap property. Later in this Section, we discuss
how the general result, use simple but large data structures,
also apply to superspreader, which has complex memory ac-
cess procedure for updates, and change detection, which is
computationally complex.

4.1 Impact of traffic skew, data structure
size, and value size

The efficiency of memory hierarchy in software switches
depends on the location of a state associated with a packet.
This is because when the state is in upper layers of the memory
hierarchy, the access latency becomes multiplicatively slower.
For example, on our test server, the access latency of memory
is 4.6 times slower than L3. There are two factors that dictate
the location of a packet state in the memory hierarchy: (1)
Traffic skew. With a skewed traffic, the packet processing
pipeline serves a larger fraction of packets from the cache,
leading to overall lower latency per packet. In contrast, a
more uniform traffic distributes the state associated with a
packet across all the layers, leading to higher latency per
packet. (2) The data structure size. Whereas the data of a
small data structure may fit in L1-L3 cache, a large data
structure might still need to access memory to locate its data,
leading to overall higher latency per packet. Here we discuss
the impact of entry size, traffic skew, and data-structure size
on the performance of packet processing pipelines.
Traffic skew. We study the impact of skew on measurement
tasks by fixing the measurement task to heavy hitter detection
and the data structure size to 32 MB. This size ensures that
the measurement task does not fit in the L3 cache in our test
server.

We first compare the impact of the skew across implementa-
tions with varying number of hash functions and memory ac-
cesses. Typically, as the traffic skew decreases, access patterns
distribute more evenly across the memory hierarchy. Thus,
measurement tasks with lower number of memory accesses
per packet are less affected by the skew. Figure 3a shows the
tail latency of count array and Count-Min sketch for heavy
hitter detection. Since the Count-Min sketch makes 3 memory
access per packet as opposed to only one for count array, the
jump from skew 1.1 to 0.75 is larger for the Count-Min than
the count array—even though the amount of computation per
packet does not change with the skew.

Then, we compare the impact of skew across the heap,
count array sketch, and linear hash table. Figure 3b shows
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Figure 3: Effect of traffic skews on measurement algorithms and sizes

the 99th percentile per packet processing latency of these im-
plementations across varying skews. Since the data structure
is large (32 MB), the collisions are rare, and thus, the per-
formance of linear hash table is only slightly worse than the
count array sketch. Thus, under our settings, operators may
prefer the linear hash table because it provides a guaranteed
100% accuracy with negligible impact on latency versus the
count array.

However, the effect of skew on heap is more prominent:
the skew not only affects the number of memory accesses but
also the amount of computation that the heap performs. This
is because under low skew the heap is more likely to move
an item across multiple levels than when the skew is high.
Figure 3b shows this where the heap latency grows by 45ns
from skew 1.5 to 1.1, but by more than 100ns when going
from skew 1.1 to 0.75.
Data structure size. To study the effect of skew changes
together with the size of data structures, we fix the measure-
ment task algorithm to count array and measure the packet
latency when the traffic skew changes. Here, the skew dictates
the working set of the data structure in L1, L2, and L3 cache
of CPU. Traffic with higher skew is more likely to access the
lower layer cache for packet data than the traffic with higher
latency. Figure 3c shows the average and tail latency of the
count array when we change its size from 48 KB to 200 MB
over different traffic skews.

The two jumps at 200kB and 32MB indicate the size of the
L2 and L3 cache. When the data structure is small enough to
fit in L2 cache, no matter how the access pattern looks like,
it will always get served from the L1 and L2 cache. As the
data structure size increases, data gets distributed across other
layers of the memory hierarchy. With less skewed traffic, we
are more likely to access upper layer memories, and thus the
latency gets affected more. This is visible in the figure by the
separation of latency for different traffic skews once we pass
the L3 cache size.
Entry size. A key factor for the difference in performance
of measurement algorithms is the size of the stored state. The
size of the entry dictates the percentage of the entries that are

available in the lower layer of the memory hierarchy. Fewer
number of larger entries fit in lower layer cache as opposed
to smaller entries.

An entry contains both the key and the value. Typically,
the key size depends on the flow granularity, e.g., whether
we keep one IP address (4 bytes), source and destination IP
addresses (8 bytes), or 5 tuples (13 bytes). For the value field,
we keep a 4 byte counter together with the first few bytes of
the latest packet to fill out the remaining space for that entry.
We fix the key size to avoid incurring additional memory
comparisons and hash function computation overhead and
only keep the source and destination IPs (8 byte keys).

We implementat heavy hitter detection algorithms as dis-
cussed in the previous section. Measurement tasks may keep
additional information, e.g., timestamp per flow (with a total
value size of 12 bytes) or keep a list of destinations that the
flow has contacted (e.g., 20 bytes on average). But that should
not affect the generality of the impact of entry size on the
performance.

Figure 6 shows that the tail latency of count array, linear
hash table, and heap increases as the entry size grows. This is
because we are more likely to access the upper layers of the
memory hierarchy to locate our data. The jump for the heap
here is linear and smaller than the jump shown in Figure 3b
because here the number of memory accesses or the amount
of computation of the heap does not change with varying entry
size—we still use the packet counter to reorder the heap.

4.2 Impact of measurement tasks and storage
of key-values

To cover the impact of memory and computational aspect
of measurement task, we study two tasks: (1) superspreader
detection, which updates a large memory portion per value,
and (2) change detection, which is computationally more in-
tensive than heavy hitter detection. We show that our results
from the previous section still hold even on the two extremes
of memory and computation complexity. Finally, we study
the impact of value size on the performance, and suggest a



strategy to decide whether the key and values should be colo-
cated in the hash table or not.
Superspreader detection. Superspreaders are the sources
that chat with a large number of distinct destinations. They
can identify distributed denial of service attacks (DDoS) or
sudden changes in traffic pattern. We implement the super-
spreader module to report all the source IPs that send traffic
to more than 128 different destinations in every epoch (2 mil
packets). For every source IP, we keep a distinct Bloom filter
counter per entry [15] with three hash functions and 1024
bits of data to identify new destinations. Due to the Bloom
filter, superspreader has a more complex update procedure
than heavy hitter detection.

Figure 4b shows the average and tail latency of different
implementations of superspreader detection. Count array still
has the lowest latency among the algorithms while reaching
97% precision (Figure 4b). The hash tables all have a preci-
sion of 99% and recall of 100% (The accuracy is less than
100% because of the Bloom filter error in distinct counting)
with linear hash table being the fastest. The conclusion here
follows the result for heavy hitter detection algorithms.
Change detection. Change detection identifies anomalies in
packet streams, e.g., when the traffic pattern of a host sud-
denly changes or when the traffic volume changes too rapidly.
Operators can use change detection for detecting compro-
mised hosts, or as a signal to a control framework, e.g., load
balancing, when sudden changes happen. For evaluation, we
use an EWMA model to predict the traffic of each flow and
report the flows that are outside the predicted value. Due to
the prediction model, change detection is more computation-
ally intensive than heavy hitter detection in updating per flow
state.

Figure 5b shows the average and tail latency for different
implementations of change detection. Count array still has the
lowest latency among all the algorithms while reaching 99%
precision (Figure 5b). The linear hash table has a precision of
100% and recall of 100%. Similarly, heap also has a precision
and recall of 100% but with 80-100 ns higher latency.
Direct and indirect key-value storage. For measurement
tasks with large values, it is better to store the values sepa-
rately and only store a pointer in the hash table. We can then
keep a contiguous list of keys to increase the locality of mem-
ory accesses for lookups when collisions happen. However,
when the value size is small, it is more beneficial to keep the
key and values together so that they share the cache line. To
understand this tradeoffs, we implement two versions of linear
hash tables: Linear which store keys and values together and
LinearPtr which stores the keys with a pointer to the values.

Figure 7a shows the tail latency of both solutions with
different traffic skews. For the lowest skew (Z = 0.75), the
working set does not fit in cache and entries come in and go

out of the cache. Each pointer is 8 bytes so keeping values
smaller than 8 bytes only incurs additional delay. However
as the value becomes larger, using a pointer becomes more
beneficial. For example, for value size of 60 bytes, using a
value pointer (LinearPtr) decreases the tail latency by 30%.
This is because with large values lookups and insertions in a
linear hash table are more likely to traverse multiple cache
lines. Instead, value pointers promote key locality, which
improve insertions and lookups by lowering cache lines that
we go through.

For higher skew traffic (Z = 1.75 and Z = 1.25), the work-
ing set is small enough to fit in the CPU cache while the
additional memory accesses due to the separation of keys and
values has negligible overhead (about 5ns).

5 MEASUREMENT ALGORITHMS ON
MULTIPLE CORES

Measurement tasks never run in a standalone fashion. With a
pipeline of network functions, it becomes harder for a single
core to sustain the line rate packet processing. To get around
this, we can load balance the incoming traffic across multiple
cores based on a hash of the flows [2]; each core then runs
the pipeline for a subset of flows [26]. Although, this leaves
us with isolated measurement functions on each core and
requires state synchronization across the cores. In this section,
we will first investigate how to share the measurement data
across cores running only measurement tasks. We will then
study the impact of sharing resources with other applications.

5.1 Sharing states across multiple cores
When a measurement function runs over multiple cores, we
need to synchronize states across cores. Maintaining locks
on the shared state for consistency has a huge overhead, es-
pecially when the cache line that holds the lock is passed
between the cores [16]. To get around this, we can either
use (a) shared lockless data structures or (b) separated data
structure for each core.

Shared lockless data structures. The linear hash table
and the count array are easy to implement in a lockless fash-
ion. For example, we can use compare-and-swap (or similar
atomic operations) to update a counter atomically in a mul-
tithreaded environment. However, it is harder to implement
lockless access for more complex data structures such as a
heap.

Separated data structures. Each core maintains its own
copy of the data structure. When we need to report the over-
all measurement results, we can merge the state/results from
each data structure accordingly. Typically, merging the mea-
surement results from multiple cores has little overhead if
the reporting frequency is a few orders of magnitude greater
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Figure 4: Performance and accuracy of superspreader detection
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Figure 5: Performance and accuracy of change detection
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Figure 7: Comparing linear hash tables with and without pointers (key size=48 bytes)

than the packet processing time (e.g., >10ms reporting fre-
quency vs. 67ns processing per packet). This is because a
separate core can merge the data with low memory bandwidth
usage. For example, with a measurement interval of 100ms
and a 5MB data structure per core, a reporting core merging
measurements of 10 cores only requires 500MB/s memory
bandwidth, which is less than 1% of the total available mem-
ory bandwidth of our Xeon processor.
Separated option has lower latency than shared option.
Figure 8 compares the latency of heavy hitter detection for
the two options using a count array of different sizes. The av-
erage and tail latency of the separate approach are consistently
lower than the shared one (The accuracy is not shown because

it is the same). For example, when the size of count array is 32
KB, the tail latency of the shared count array is 12 ns higher
than the separated count arrays. This is because of the over-
head of running the compare and swap operations for main-
taining the consistency of the shared data structure. Moreover,
because the L3 cache is shared, the cache-coherency protocol
will perform additional operations when a cache line in a core
is read by a different core. On modern CPUs, this additional
overhead can be as large as 40 cycles [44]. In contrast, the
overhead of merging separate data structures is lower because
we only need to pay the overhead at the reporting time rather
than on a per-packet basis. Thus, saving memory also de-
creases the performance on multiple cores because it requires
some sort of synchronization and wastes CPU cycle.
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Figure 9: Impact of resource sharing across applications

The shared count array latency is initially high and then
decreases by 10% and remains almost constant until 20MB.
For smaller count-arrays there is a higher chance that the
two cores access the same entry (and cache line) in the count
array, leading to extra latency due to compare-and-swap and
the cache coherency protocol.

5.2 Sharing resources with other applications
The measurement tasks may run in conjunction with other
network functions or applications on the same machine. Be-
cause all of these applications share resources, e.g., the cache
and memory bandwidth, they end up affecting each other.
For example, previous works have shown that cache-hungry
applications can degrade the performance of other network
functions [26]. To understand the impact of sharing resources
on measurement algorithms, in addition to running the heavy
hitter detection algorithm, we run two types of concurrent
applications: (a) We run a single L3 aggressive application
on a separate core that accesses random memory locations
to show the impact of the contention on the L3 cache; (b)
We run multiple of such applications on different cores that
aggressively read and write memory to show the impact of
the contention at the memory controller.
Impact of the L3 cache contention. We run a memory ag-
gressive application on a core in the same NUMA domain as
our measurement task. The application uses a hash function
to access a random memory address and increment the value
there. To guarantee that this application has higher priority for
using the L3 cache than our measurement pipeline, we low-
ered the traffic rate so that the measurement task accesses the
L3 at a much slower pace than the application core. We then
measure the latency of the measurement task as the memory
footprint of this application increases.

Figure 9a shows that the latency of the measurement task
remains almost constant up to the L3 cache size. After, the
memory aggressive application starves L3 cache and leaves
no room for the measurement task, which cause the measure-
ment task to access the main memory, leading to the sudden

jump. Increasing the memory footprint of cache aggressive
applications further does not increase the latency. This is be-
cause the next bottleneck is the memory bandwidth and our
bandwidth usage is less than 10% of the available bandwidth
of a NUMA domain (1.1GB/s out of 17GB/s) [1].
Impact of memory controller contention. Today, many big
data analytics frameworks rely on the large memory avail-
able on modern servers to improve their performance. For
example, Spark [62] keeps most of the intermediate data in
memory for later usage; Hadoop [57] keeps portions of the
files in memory for faster successive accesses. These appli-
cations can quickly drain the available memory bandwidth.
Previous studies [37] show that Spark on average uses 40%
of the memory bandwidth can can burst up to 90%. This
high memory bandwidth usage affects the performance of the
measurement tasks running on the same server. To study this,
we wrote an application that aggressively utilizes the mem-
ory bandwidth. A single instance of this application utilizes
12GB/s of the 17GB/s of memory bandwidth4. We run many
instances of this application to increase the contention of the
memory bandwidth.

Figure 9b shows that as the number of applications in-
creases, the latency of the measurement task increases. This
is because with more requests to the memory controller, it
becomes harder for the measurement task to fetch the packet
data from memory, and therefore, with 7 cores the average
latency of the measurement task increases by a factor of 2.9
for the count array.

Note that in both cache and memory bandwidth contention
scenarios, the differences between the measurement algo-
rithms still hold. The count array always has the lowest la-
tency in all settings.

4We found out that even by running multiple instances of this application,
we cannot utilize more than 14.5GB/s of the bandwidth, which we attribute
to the queuing effect and the CPU parameters.



6 RELATED WORK
In addition to the related works covered in Section 2, our
previous workshop paper [11] performed a preliminary eval-
uation of measurement algorithms. This paper extends the
workshop paper in the following aspects: (1) Implementation:
Our previous study was on the Click modular router [39],
which is limited in throughput as it did not let us use advanced
techniques such as batching and packet data prefetching from
the cache. In this paper, we run all algorithms directly on
DPDK and apply different techniques to reach the maximum
packet rate. (2) Algorithms: Our previous study mainly fo-
cuses on count array, Count-Min sketch, and heap. In addition,
this paper investigates more in hash table implementation. It
compares the linear hash table and the Cuckoo hashing and
shows that the linear hash table is the fastest choice when
we need 100% accuracy. (3) Measurement tasks: In addition
to heavy hitter detection in [11] which identifies keys with
heavy volume counters, we also tested superspreader detec-
tion which counts the number of distinct items and change
detection which identifies anomalies in traffic. (4) Settings:
We also evaluate these algorithms on a variety of scenarios
including multiple cores, different traffic skews, and a variety
of entry sizes.

In addition to the three classes of algorithms introduced
in Section 2, there are other packet and flow sampling so-
lutions [20, 29, 34, 56]. These solutions are orthogonal to
our algorithms and can always be combined to reduce the
measurement load.

Recent works on optimizing the performance of network
function in software switches [25, 26] mostly focus on bet-
ter management of the memory usage of different network
functions. Our work can help improve the performance of
network functions by guiding developers to design and select
the best measurement algorithms. Dobrescu et al. [26] asso-
ciate the degradation of the network functions performance
with the number of L3 references that competing applications
make. We give insights on how to improve the performance
of measurement components in such settings.

7 DISCUSSION
Theoretical model. While a theoretical model for estimating
the latency of measurement pipeline helps in making design
and optimization decisions, it is a challenging task as the per-
formance of the packet processing pipeline depends on many
factors, e.g., implementation of the algorithm (packet batch-
ing and/or prefetching, SIMD instructions), other resident
applications, CPU properties (pipelining, speculative execu-
tion). Our previous work [11] shows a preliminary model for
estimating the measurement algorithm latency. We incorpo-
rate the above factors into the model in the future.

8 CONCLUSION
With the trend of running network functions in software, keep-
ing states inside these functions, and performing measurement
to guide the deployment of these functions, it is important
to understand which algorithms and data structures work the
best in software. The key metrics in software are performance
and accuracy rather than memory and accuracy in hardware.
Our experiments and analysis show that simple is often the
best. For measurement tasks that do not require perfect accu-
racy, a count array, which is general enough for a wide range
of measurement tasks, has the lowest latency and the highest
throughput. For tasks that require 100% accuracy, we recom-
mend a linear hash table. We verified this conclusion for a
variety of traffic settings, measurement tasks, and multiple
core settings.
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