
1

Challenges and Solutions in Peer-to-peer Live
Video Streaming

Masoud Moshref, Hamid R. Rabiee, and Saeed Nari
Department of Computer Engineering, Sharif University of Technology

Tehran, Iran.
Email: moshref@ce.sharif.edu, rabiee@sharif.edu, nari@sharif.edu

Abstract— Peer-to-peer networks have attracted consid-
erable attention from researchers both in academia and
in industry as an infrastructure for distributed computing
and multimedia broadcasting. In recent years, many proto-
cols using P2P networks to implement a video multicasting
application have been proposed. In this paper, we present
a problem-based viewpoint to survey the challenges in
designing P2P live video streaming applications through
a comprehensive analysis of negative and positive points
of their solutions. We categorized these points in an
innovative hierarchical structure based on four categories:
topology, send/receive data mechanisms, incentive, and
group management.

Index Terms— Peer-to-Peer Networks, Live Video, Mul-
timedia Streaming.

I. INTRODUCTION

As the Internet technology is expanding, the con-
tent providers are investigating better ways of dis-
tributing multimedia contents through the Internet.
These investigations have led to apply some new
methods including video coding, data compression
and multicast video streaming. In the recent applied
methods, the server attempts to send video data
using multiple unicast connections, IP Multicast,
Application Layer Multicast (ALM), or a hybrid
method. Nowadays, there are very strong servers
and large bandwidth in use; however, the number
of clients and their expectations have been con-
siderably increased correspondingly. Therefore, the
scalability issue seems to be the major drawback
in methods using unicast connections. Furthermore,
unicast video distribution does not use network
resources efficiently and is not reliable because of
single point of failure deficiency. The IP Multicast
technology is network efficient, but it is network
dependent, needs routers to keep per group state,
and is unable to provide security, flow control, and

congestion control as higher levels do. Besides, it
seems that the ISPs are reluctant to activate it in
their networks (However, it may be implemented
in application specific networks (IP Multicast is-
lands)). ALM takes advantage of Uplink bandwidth
of clients and their processing capacity to gain scal-
ability and flexibility, and it is network independent.
There are three approaches to implement ALM:
Content Distribution Networks (CDN), Peer-to-Peer
networks, and a combination of both. Peer-to-peer
networks do not need a particular investment and
almost everyone can leverage it to multicast their
contents.

A peer-to-peer overlay network is a kind of
distributed system, which relies on resources of
client machines to self-organize an overlay net-
work as opposed to using network infrastructure or
centralized control. These networks cover a large
usage spectrum from grid computing, distributed
data storage, and game networks to media broadcast
of TV channels (live, on-demand, or interactive),
and distance learning. Although these networks have
many advantages such as high availability, low cost,
and scalability, there are some issues which make
design of P2P streaming protocols challenging. Ex-
amples of such challenges are dynamic membership,
heterogeneous bandwidth and processing capacity,
and existence of selfish and malicious nodes.

Non-interactive video streaming can be divided
in two categories: live and on-demand. In a live
video streaming session, video contents are being
distributed among the users in a real-time syn-
chronous manner. In contrast, users may prefer
watching different parts of a video asynchronously
or even different video clips at a time. In such cases,
video on demand applications would be alternative
solutions. Although these applications share some



2

common challenges, there are certain distinct areas.
This paper focuses on live streaming while we may
give a few solutions for common challenges usable
in on-demand streaming as well.

Many researchers have studied this field and
proposed a variety of credible protocols in recent
years. A few surveys are being published either in
peer-to-peer streaming protocols or about peer-to-
peer streaming challenges within each year. Eng
Keong Lua et et al. in [1] surveyed P2P over-
lay networks and categorized them in structured
and unstructured P2P networks. They compared
different overlay protocols only based on their
topology construction process. [2] compared three
error-resilient scheduling approaches in live video
streaming supported by simulation and experimental
results. [3] surveyed topology related challenges and
solutions in live and VoD P2P streaming while it
did not consider scheduling, coding, and incentive
problems. Hosseini et al. [4] tried to compare ALM
with alternative solutions. They also categorized
ALM protocols based on their properties such as
. Liu et al. [5] compared P2P multicast solution
with alternative ones, listed the requirements for a
P2P video broadcasting application, and presented
the pros and cons of tree-based and data-driven
structures. They also reviewed the challenges in P2P
streaming in seven categories. Gao in [6] considered
three parts for a P2P streaming protocol: topology
construction, routing and scheduling, and member-
ship management. However, its authors did not dig
further to categorize challenges and solutions in
each section. [7] considered two main challenges in
P2P networks including locating potential neighbors
and maintaining topology structure.

In this paper, authors have tried to take a new
viewpoint on this field and study it based on
a problem-based approach. We have chosen this
approach because we think that the peer-to-peer
streaming field is mature enough that repetitive
problem-solution patterns can be extracted from the
proposed protocols. We gathered and categorized
these patterns and their instances in protocols to
pave the way for proposing a useful pattern lan-
guage [8] in this field. A pattern language is an
organized way to describe a set of efficient design
solutions to repetitive problems in a professional
field.

The rest of the paper is organized as follows: In
the next section, our presentation approach has been

introduced. Subsequently, in the four later sections,
we presented the challenges and their solutions in
four general categories. In Section VII, the paper
is concluded and some open research problems for
P2P streaming are reviewed.

II. CATEGORIZATION APPROACH

A video streaming protocol can be divided into
four tasks: 1) topology construction process, 2) data
delivery process, 3) incentive mechanism 4) group
management process. Note that these tasks are not
independent and may have common topics. For
example, they can have common challenges from
different viewpoints; a solution in one task may have
negative or positive effects on another one.

Initially, we present our data model and the logic
behind our categorization before focusing on each
part. Our presentation approach is based on a knowl-
edge tree which has four edge types: challenge,
solution, instance, and categorization. A challenge
edge shows a challenge in its parent node, which can
be the root node, a solution, or a subcategory. A so-
lution edge defines a solution for a challenge, and an
instance edge presents protocols using this solution.
We have two purposes by showing an instance of
a solution in a protocol. First, we like to show the
context of the problem where the solution is pro-
posed. Context may include the assumptions about
the underlying network and the clients’ machine,
protocol application, or other related solutions used.

III. BUILDING THE TOPOLOGY

This section discusses the challenges to build
a topology in designing a peer-to-peer live video
streaming protocol. We divided these challenges
based on the resulting topology in three categories:
Tree, Mesh, and hybrid. Although we will mention
later that the first two types can be very close in
some properties and make a spectrum in the so-
lution space, this categorization helps us review the
literature better and focus on the proposed solutions.

A. Tree

In the tree topology, nodes make a tree-like
structure rooted at the video source. Each node
joining the tree receives video data from its parent
positioned in the upper layer and sends them to its
children located in the lower layer.



3

Fig. 1. A sample of the knowledge tree presenting the group management task challenges, solutions, and instances of the solutions

The first challenge, in tree structure, is obtaining
the network address of potential parents. There are
two well-known solutions: first, asking the source or
bootstrap oracle node(s) [9] (The deployer may use
load balancing for the server). Having a comprehen-
sive global view and being able to run centralized
topology management algorithms are advantages of
this method. On the other hand, it has its own
centralized related disadvantages such as the single
point of failure and bandwidth/process scalability
problem. The second solution is walking from the
root node to the potential parent(s). In each step,
the new node walks down the tree and gets the
information of the current node’s children. This
method has been used in Overcast [10], NearCast
[11], Nice [12], and Zigzag [13] protocols.

The second design problem is selecting the right
parent. As mentioned in [14], finding a minimum
spanning tree with constrained maximum degree
on a graph is NP-Hard even in a centralized off-
line situation. Therefore, protocol developers have
tried historic algorithms to find a sub-optimal tree.
Many proposed solutions can be categorized into
locality-aware class. Locality-awareness has various
techniques, which will be discussed briefly in the
following section. Many other protocols such as
[15], yoid [16], and SpreadIt [17] used end-to-end
delay to choose the best parent. However, Over-
cast [10] uses hop-count measured by traceroute
as a measure of network distance. NearCast [11]
selects the parent node using geographical coor-
dination, which is appropriate for regular national
networks. DagStream [18] and LSONet [19] use

hash functions on IP/ISP/Network-conditions infor-
mation. Using a locality-aware DHT protocol (such
as Pastry [20]) in Trickle [21] and SplitStream
[22] is another method, which its efficiency in
heterogeneous networks is debatable [23]. Using
some landmark/lighthouse nodes is the final method
which is proposed in Highways [24] and used in
[25]. In this method, each new node finds its end-to-
end delay from some predefined/dynamic landmark
nodes and locates itself in a virtual space used to
define locality. Locality-aware protocols are differ-
ent not only in the method of finding the locality but
also in how they use this measure. While nodes in
mentioned protocols try to find the nearest parent to
themselves, RaDiO [9] nodes favor parents near the
source node and DHCM [26] nodes find a cluster in
which nodes’ distance to their parent is equal to its
distance to the parent in order to create homogenous
monotonic clusters in the tree. Finally, there are
other protocols that mix a locality-aware method
with a heuristic technique to use uplink bandwidth
efficiently. For example, Overcast tries to put the
new node as far away from the root while the
available bandwidth of the parent node is greater
than what the root node offers.

Loop avoidance is the third challenge to over-
come in creating a tree structure. A simple solution
is sending a detector packet containing the path
from the root node to the leaves. Using Bloom filter
[27] to reduce the packet size is suggested in [28].
DagStream uses another innovative method: Every
node sends its level in the heartbeat packets to its
children. If a loop is formed in a tree refinement



4

mechanism, this level will increase after sufficient
refresh periods. Every node keeps track of its par-
ent(s) (DagStream uses a multi-tree structure which
will be discussed later.) using a variable and when
finds the unusual value changes tries to break the
loop.

The last design problem in the tree topology
is its refinement. As there is the node churn in
every P2P network, and we do not know when a
”good” (strong, reliable, near, etc. depending on the
protocol) node will join/leave the tree, it may lose its
efficient structure; therefore, most protocols have a
refinement algorithm. Some protocols move ”good”
nodes near to the root in order to reduce the tree
depth resulting in a reduction of average delay. It
is usually implemented using a parent-child switch
mechanism (Overcast [10] and mTreebone [29]). A
negative effect of these refinement algorithms is the
frame losses during the switch period, solutions of
which will be discussed in Section VI.

Low delay in sending the video (using the push
mechanism) and simple send scheduling algorithm
are two remarkable advantages for the tree struc-
ture. In the push mechanism, a parent-child link
usually lives as long as the video stream does; as
a result, the parent can make scheduling decisions
easier. However, the single-tree topology has low
uplink bandwidth efficiency because it does not use
the leaves’ uplink bandwidth, which also makes it
unfair. Moreover, download rate of a node is limited
by the download rate of its parent, which increases
the importance of the level of nodes. It means that
if an unstable low bandwidth link connects the root
of a big sub-tree to others, all nodes of the sub-
tree will receive low quality video while there is
no way to compensate in case of errors. The last
but not least point is about churn, which is an
indispensable feature of a P2P network: if a node
leaves the network, video reception in all its children
will stop until its departure is detected and a new
parent is found (Section VI explains this challenge
more).

Multi-tree structure was proposed to solve single-
tree problems. In multi-tree streaming, the server
divides the stream into multiple sub-streams (us-
ing FEC, MDC, or layered coding, which will be
discussed later) and creates a tree for each one.
The sub-stream flows in the sub-tree down to its
leaves. Each node joins to all/some sub-trees to
get the video with the desired quality. Selecting

the right trees is an additional challenge in this
structure. Nodes may select the sub-tree randomly
or by running a periodic quality check process (such
as relative delay).

Multi-parent solutions are used to solve parent’s
bandwidth and loss constraints (if uses FEC). Multi-
tree tries to solve the fairness problem by changing
the role (interior/leaf) of nodes in each tree. How-
ever, these protocols have to manage multiple trees
instead of one, which increases group management
overhead and complexity of scheduling algorithms.

B. Mesh
Here, ”mesh” means an irregular network which

all links are active and may be used to receive video
data or their related information. Each node may
have multiple neighbors and exchanges its video
contents with its neighbors, which means that it
can send and receive a video stream from a node
simultaneously. Mesh protocols usually use ”Pull”
method to get the video; in other words, each node
sends video packets based on the received block-
request. The block may be a frame, multiple frames,
a GoP, multiple GoPs, or even a sub-stream (which
closes this structure to the multi-tree topology [30]).
As the size of block decreases, the protocol designer
has more control in the scheduler module, but
this may increase the overhead of control packets
(usually because of request packets).

Challenges in mesh P2P networks are locating
neighbors, neighbor selection, and mesh refinement.
Protocols such as CoopNet [31], and Dagster [32]
use bootstrap node solution to locate neighbors. In
contrast, a received join request may be redirected
to a new node in each step of random walk. This
method may impose extra joining delay and in its
general way, increases the overhead of initial/high
degree nodes. (SCAMP [33] used in DONet [34])
and Biased Forwarding (Swaplinks [35] used in
ChunkySpread [36]) have been proposed to address
the asymmetric overhead problem. Note that ran-
dom walk locates and chooses a neighbor within
one step. The most common technique to locate
neighbors is exchanging neighbors/known nodes list
using gossiping (DONet, DagStream [18]), which
is usually used after the first join. Other solutions
such as suggesting a neighbor (DagStream) or using
a DHT based middleware is also applicable.

A node must choose some neighbors after locat-
ing the potential ones. DagStream, LSONet, and



5

[15] use locality-aware techniques (discussed in
Section III-A). Choosing nodes with similar band-
width (Bullet’ [37]), low-level nodes, topology-
aware (PROMISE [38]), and data aware are other
solutions. Data-aware methods try to join nodes
based on a data-related parameter using a mecha-
nism in order to reduce delay and network load. This
parameter may be shared available data (PULSE
[39] and DONet) or shared interests (current win-
dow) (PULSE and [15]). Some protocols (DONet
and PULSE) use gossiping and others such as
[15] rely on heartbeat messages to advertise the
parameter. DHT-based networks and centralized so-
lutions (like trackers in BitTorrent) are some other
applicable techniques proposed for the mechanism.
It is noteworthy that although in a live streaming
session all nodes may want to see one part of
a video, data aware method is useful to form a
lag based mesh and applicable with scalable video
streams or multi-session P2P structures (AnySee
[40] and Trickle). Avoiding unreliable mesh clusters
and handling NATs are the points which should be
taken into consideration in this topic. It is possible
to cluster nodes behind a NAT to use their uplink
capacity in order to serve each other (STUN [41]
and TURN [42]). Mesh refinement, as the last
design problem, has been handled by probing the
quality related parameters such as relative delay of
the advertised data among different neighbors or
simply their overlay distance to the source node
(DagStream and ChunkySpread).

Mesh reliability against the churn thanks to the
pull method (with small block size), efficient net-
work resource usage, ability to use low uplink band-
widths (by swarming), and ability to use FEC codes
are the advantages of the mesh structure against
the single-tree topology. However, due to the pull
method, it imposes long start-up delay and has large
control overhead, especially in case small block size
is used. Besides, mesh protocols need more complex
scheduling procedures (in both sender and receiver).

C. Hybrid

Hybrid structures include P2P-CDN networks
[43], mesh-DHT (structured) networks (Push-to-Pull
[44]), and mesh-tree networks. We will discuss the
last option more. ChunkySpread, LSONet, and [45]
tried to make a multi-tree structure over a mesh
network based on data-aware methods while the

tree links may have shorter life than a stream to be
flexible about changes using information received
through the mesh network. MTreebone [29] creates
a tree backbone near the source formed by reliable
nodes while enjoys reliability of mesh structure
for other nodes. It uses mesh structure in pulling
data only for retransmission if a data outage occurs
in tree-bone. TCMM [46] and Bullet [28] create
a universal single-tree structure to deliver control
messages. TCMM uses the tree structure only for
delivery of control messages, so it avoids tree re-
finement in short sessions. On the other hand, Bullet
uses both the tree and the mesh structure for data
delivery. The idea is distributing as much data as
possible through the tree using the push mechanism
and exploiting the unused uplink bandwidth by pull
requests. Although the Push-to-Pull protocol does
not have a mesh-tree structure, it uses the same
idea and tries to scatter fresh video data uniformly
in the network using the prefixed structure (tree-
like one) in the push phase and pulls them in the
mesh network. Table I summarizes hybrid protocols
specification.

IV. DATA DELIVERY

After the overlay topology has been created, the
mechanisms for sending and receiving video data
should be designed. This section explains the chal-
lenges mostly related to the scheduling problems.

A. Bandwidth heterogeneity
Peer-to-peer nodes have various types and cover

many clients with different bandwidth access. Each
type may have its own quality requirements, but
all clients want to see the video almost continu-
ously. Using multiple video versions is not scal-
able because it increases user groups and imposes
much load on the source node. However, the main
well-known solution for this challenge is ”adaptive
quality”. In Adaptive quality methods, each node
receives the video stream with a quality based on
its downlink capacity without imposing any/much
bandwidth overhead on the nodes, especially the
source node. Scalable video coding is the main ap-
proach for adaptive quality and can be accomplished
by providing multiple versions of a video in terms
of either amplitude resolutions (SNR scalability),
spatial resolutions, temporal resolutions, frequency
resolutions, or combination of these options and



6

TABLE I

HYBRID PROTOCOLS SPECIFICATIONS

Protocol Data reception mechanism Mesh usage Tree usage Coding Tree link lifetime

ChunkySpread Pull Info a dissemination
& find parent

Data delivery MDC Stream

Bullet Push-pull Pull data Push data & info
dissemination

MDC/FEC Session

LSONet Pull Info Dissemination Data delivery Layered Layer
Layered for incentive [45] Pull Info dissemination Data delivery Layered Block (GoP)
TCMM Pull Info & data delivery Control messages - Session
mTreebone Push-pull Pull data (only

retransmission)
Push data - Session

Push-to-pull Push-pull Pull data Push data (prefixed) - -

ainfo means any information about data in nodes or their properties

may be accessed either at frame level or object
level (in the MPEG4 standard) [47]. On the other
hand, there are two techniques for packetizing these
versions:

1) Layered Video: 1) Layered Video: It divides
the video into multiple layers each of which com-
plements the lower one. This means that the base
layer is decodable by its own, but the upper ones are
only decodable if their dependencies are met. This
dependency requires complex scheduling algorithms
in order to use the bandwidth efficiently. Besides, it
is likely that a top layer becomes blocked in the
network due to the uplink bandwidth constraints;
therefore, the protocol must guarantee that all layers
would be available for high bandwidth nodes. [45]
tries to deal with this problem by moving the
high bandwidth peers near to the source node and
clustering the peers by their bandwidth.

2) MDC: This technique creates multiple video
versions similar to Layered Coding while trying
to remove the troublesome dependency by adding
redundant data to the layers. A simple way to do this
is to run an FEC-like process on the layered video.
Using this technique with redundancy parameter
p = 1 − k/n, while a node receives i < k
different video packets for a frame, the video quality
improves. The downside of MDC against layered
coding is its large bandwidth overhead, which is
illustrated in [45] for a nearly unique protocol with
different video codings.

Transcoding the video frames in each level (Dag-
ster [32]) and prioritizing the frames based on a
distortion metric are other less favorite techniques.
Transcoding is re-encoding the video frames with
different qualities for differing nodes. Although

MDC and layered video coding techniques have
some computational overhead in the source and
destination nodes, the computational overhead of
transcoding is so high that makes it unsuitable
for live video broadcasting. The latter technique is
based on the distortion concept. Distortion is defined
as the loss of quality in case of frame loss. It can
also be defined using the PSNR measure and its
value is transmitted as a control flow, simply as the
bytes becoming undecodable, or even as a rough
value assigned to a frame based on its type or
dependent frames.

How to get general information about the streams
(size, PSNR, etc.) is the design choice which is usu-
ally introduced while working with scalable video
coding techniques. In video on-demand application,
each node could download it along with the startup
nodes list. However, in the live video streaming
sessions, they should ask the source once in a while
or receive it via a universal broadcast structure. Tree
topology in the Bullet protocol is a good example
of such structure. More research is, still, needed in
this area of P2P streaming.

Dealing with low bandwidth links is the last point
which needs mentioning in this subsection. A pro-
tocol may divide a video stream into multiple sub-
streams in order to use low uplink bandwidth links.
Moreover, this technique can be complemented by
network coding. Network coding attracted atten-
tions, especially in wireless P2P streaming; how-
ever, it needs more work to be compatible with
MDC and layered coding, loss tolerant, and able
to respect importance of different packets. Besides,
protocols such as Trickle and AnySee try to use



7

inter-overlay capacities while they are running on
multiple streaming sessions.

B. Error resiliency
Error is an inevitable part of a P2P network

using ordinary machines connected by error-prone
residential links. Besides, tree family structures are
very vulnerable to the errors and propagate them
down to the leaves. As a result, protocols use error
resilient solutions. Retransmission is the first idea
which springs to mind. A node may ask the incom-
plete frames from new parent(s)/partners (CoDiO
[48]) or pull it in mesh in hybrid protocols (mTree-
bone [29]). CoDiO prioritizes the retransmission
requests based on a distortion model to avoid creat-
ing congestion due to the extra requests. However,
retransmission can increase delay, especially for live
streaming and requires a larger play buffer in its
simple version. In contrast to retransmission, other
solutions engage sender nodes more: FEC adds data
redundancy (1 − k

n
) to enable clients to regener-

ate a healthy stream. However, it does not help
clients to play video before receiving k blocks while
it imposes a fixed bandwidth overhead. Protocols
which use MDC coding also profit from this idea
while they enable receivers to decode even one
stream (adaptive quality feature). Layered coding
also has this adaption, but it is more vulnerable
to errors due to layers dependency and lack of
protective redundancy. Furthermore, there are some
codec specific features such as H.264 SP and SI
frames [9], which have been used to stop error
propagation.

Making the redundancy of FEC adaptive based
on the network overhead is an immature idea in this
field, which needs more elaboration. Besides, it is
possible to protect the frames asymmetrically based
on their distortion (frame type, PSNR, number of
depending frames, layer number, etc.).

C. Congestion & Throughput Change
Video streaming consumes bandwidth intensively

and its playback quality can be very sensitive to the
link congestion. Besides, the topology dynamicity
can change the load of shared links. On the other
hand, most protocols use UDP transport protocol,
which does not have any rate control policy, to de-
liver video packets. Some protocols use rate control
methods to deal with this challenge. For example,

Bullet uses TFRC [49]. [45] uses probing requests,
high priority small packets, to evaluate the network
condition.

Adaptive quality techniques have also been useful
in this situation. PALS [50] uses layered coding.
It monitors the quality of each overlay link while
requesting video blocks. When it finds out conges-
tion in a link, firstly, it tries to decrease bandwidth
allocated to upper video layers (using a distortion
model). Subsequently, it drops a layer by overriding
its requests if the congestion lasts more. PALS will
do the reverse actions if the situation improves. This
technique is also applicable in MDC coding. As
another technique, Bullet’ has adaptive request size
(block size) which enables it to guide the traffic
quickly and precisely. Using a congestion-aware
protocol, especially along scalable video coding,
quality vibration becomes a sensible challenge. One
of the interesting solutions is proposed by Dimitrios
Miras in [51]. He uses an artificial neural network to
predict the quality of future video and a fuzzy rate-
quality controller considering properties of human
quality perception to smooth streaming quality.

D. Data Delivery Models

We try to explain the data delivery models and
their related challenges in this subsection. The first
model is the pull model, which often accompanies
the swarming technique. In the pull model, the client
finds the appropriate peers which have the required
video blocks, then selects a subset of them to send
its request to. Then the selected peers schedules
the answers to the received requests. Selecting the
neighbors, filling the request packets, and schedul-
ing the answers are the key design problems in this
model. These scheduling tasks can be as hard as an
NP-Complete problem [19] and not being aware of
the future content properties due to the live nature
of video would aggravate the situation.

Data-aware mesh protocols use the advertised
information and choose the container node. Al-
though there are many data-aware protocols such
as LSONet and Bullet, DoNet is the well-known
representative for this strategy. Data advertisement,
here, means to let others know which video blocks
a node has. Nodes may broadcast advertisement
packets in one hop like in DONet, rely on a uni-
versal broadcasting structure (usually tree) like in
Bullet (using a collect & distribute approach), or



8

inform some super-nodes like tracker approach as in
BitTorrent-like protocols in order to distribute data
advertisement. Overhead of Advertisement packets
is the main challenge of this method. Bullet uses
Bloom filter to reduce the size of these packets and
PULSE takes a two-phase strategy. PULSE nodes,
firstly, send their play buffer lag time according to
the current video play-time in the server. Then each
node selects a subset of its neighbors and exchanges
detailed buffer map. LSONet uses a locality-aware
approach while there are protocols which try a
random walk query passing to reach the data holder.

The second design problem is filling the request
packets. If nodes try to ask the beginning block in
their interest window, neighborhood relation loses
its efficiency and there will be few blocks to ex-
change with neighbors (Note that video playback
time is almost synchronous in all nodes). The
second choice is exploiting a random approach.
However, there are other approaches which are more
intelligent. DONet and PULSE nodes request the
rarest chunk among their neighbors in hope for
distributing the video blocks faster. Again, a node
may take a content-aware approach and choose a
distortion model to prioritize frames to be requested.
LSONet uses layered coding and takes a greedy
approach to maximize each node’s received layers
knowing available layers of its neighbors.

The third design problem relates to the sender
and scheduling answers for the received requests.
Besides the random approach, a PULSE sender node
counts the number of send attempts for each video
block and schedules the least sent blocks first in
order to speedup delivery process. CoDiO [48] pri-
oritizes frames based on the number of descendants
in the receiver’s sub-tree to increase the simulta-
neousness in the network. Content awareness and
distortion models can also be useful at the server-
side. Still, server-side scheduling is mostly affected
by incentive policies, which will be discussed in
Section V.

Pull model is based on the data dispersal in a
node neighborhood to make an interactive exchange
among the node and its neighbors; however, data
clustering based on the neighborhood relation can
degrade the pull model efficiency. Therefore, avoid-
ing clustering of the video blocks in the network is
a probable challenge which needs more considera-
tion. Requesting the rarest block among neighbors
and sending the least sent block can help break

these clusters. Besides, there are hybrid protocols
which use the push-pull model to overcome this
challenge. They (Bullet and Push-to-Pull) use a
structure to inject (push) fresh video blocks to the
network. As a complementary technique when they
use MDC coding, different streams will be pushed
into children to increase the block diversity. The
third model is the push model, scheduling of which
is very simpler and only the server-side scheduling
techniques mentioned earlier are applicable in it.

V. INCENTIVE

This section talks about incentive which com-
pels nodes to contribute in the peer-to-peer net-
work. We considered three parts for an incentive
policy: mechanism, input data for decision, and
output behavior. Many researchers have worked on
the mechanism. Using some monitor/super/trusted
nodes [52] to monitor others’ behavior is a simple
semi-centralized solution which brings other design
problems such as choosing, maintaining, and finding
these nodes. In the reputation-based model, nodes’
behaviors depend on the node’s contribution to the
whole network. The mechanism designer should
choose a method to distribute the reputation value in
the network and guarantee its integrity. In contrast
to the reputation-based model, ChunkySpread and
PULSE use a two-sided model like the well-known
tit-for-tat model in which each node serves others
based on the services it gets from them. Efficiency
penalty and selfish behavior of the partners of the
source node in this model are points that need more
investigation. Generally, we can categorize these
policies in the field of game theory and mechanism
design, which are hot topics these days. After the
designers chose the mechanism, they should deter-
mine input data and output behavior for it. Accepted
requests, received video blocks, decodable/useful
video blocks, or query forwarding resulting in a
video reception or finding a ”good” neighbor are
good examples of input parameters. Increasing the
responses delay and degrading the video quality
are the main approaches to punish selfish nodes.
Manipulating the sender-side scheduler to delay
responses to selfish nodes, blocking their requests
in random walk models, blocking them from good
parent/partners, or limiting advertisement packets
in data-aware approaches are possible solutions to
increase the delay. In order to change the video



9

quality, the protocol can use a distortion model to
prioritize the frames in the server-side scheduler or
use an adaptive quality method. [45] used layered
coding and [53] used MDC as a tool for applying
an incentive policy.

VI. GROUP MANAGEMENT

Group management module tries to deal with
the dynamicity of the P2P network throughout the
video streaming session. In other words, it should
define what a node should do if its parent/partner
leaves. First, it should detect this event if the
parent/partner nodes leaved ungracefully. Nodes
in TCMM, ChunkySpread, RaDiO, mTreebone (in
mesh), and DagStream use heartbeat packets to in-
form the others about their existence. Advertisement
packets can also play the heartbeat role in data-
aware protocols such as Bullet. Moreover, a quality
monitoring process like what is implemented in
NearCast and mTreebone (in tree) can detect the
departure.

The next step is to find a new parent/partner. Re-
running the topology creation process is a deficient
choice as it has its own bandwidth overhead and
causes a long gap in video reception. Overcast and
NearCast nodes keep the grandparent node reference
and ask it for a new parent. Other protocols such
as Bullet and TCMM keep some inactive/candidate
neighbors to use in case a parent detached from the
overlay.

The last step is to recover the lost frames. If
the protocol has used some redundancy in video
coding or packetizing, the loss can be less severe,
but when the loss is detected, first, the node should
decide whether the frame could be recovered in
the available time or not. Then it may ask the
new parent/partner for the frames. Moreover, Hybrid
protocols such as mTreebone can ask for lost frames
in mesh. CoDiO uses a distortion model to prioritize
the retransmission requests in the receiver side. [54]
proposed a time-shifted stream which patches the
lost frames. This solution could be useful even when
the new parent/partners do not have the required
packets although it is used in on-demand video
streaming protocols [55] and its efficiency in live
streaming needs to be evaluated more specifically.

Irrespective to the fact that the proposed algo-
rithms are able to handle a few join/leave, their ef-
ficiency is questionable if many nodes join or leave

(Flash). Flash join/leave is very likely, particularly
in the beginning and ending of a popular show
in live TV programs [56]. These flash joins/leaves
can disfigure the topology and make it inefficient.
Comparing different group management policies
in the presence of this phenomenon would be an
interesting topic to be surveyed in the literature.

VII. CONCLUSION

In this article, we noted the important challenges
in designing a peer-to-peer live video streaming pro-
tocol. We categorized the challenges in four problem
classes each of which considered the protocol from
a particular point of view: topology creation, data
delivery, incentive, and membership management.
Moreover, this paper tried to gather the key pro-
posed solutions for each challenge and explain the
advantages and drawbacks of each solution. In ad-
dition, the solutions had been accompanied by their
instances in existing protocols.

There are remaining subjects in wireless P2P
video streaming, streaming on mobile/embedded
systems, secure streaming in critical ad-hoc net-
works, video quality-aware congestion handling,
Flash join/leave handling, and structures for broad-
casting control packets parallel to data broadcasting,
which need more investigations. Moreover, there are
other semi-technical issues becoming increasingly
important hereafter: How an on-line video streaming
service should be priced considering the traditional
TV broadcasting services as a rival/complement
service? How earnings should be shared between
content producers, source node, ISPs, and even
hosts collaborating in video streaming? How to
manage digital content copyright? Considering these
challenges shows that there is a long way to go in
the research area of P2P based live media streaming
systems.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Seyyed Morteza
Mousavi and Reza Motamedi for his meticulous
editing comments.

REFERENCES

[1] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A sur-
vey and comparison of peer-to-peer overlay network schemes,”
Communications Surveys & Tutorials, IEEE, pp. 72–93, 2005.



10

[2] E. Setton, P. Baccichet, and B. Girod, “Peer-to-Peer live mul-
ticast: A video perspective,” in Proceeding of the IEEE, ser. 1,
vol. 96, 2008, pp. 25–38.

[3] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video
streaming systems,” Peer-to-Peer Networking and Applications,
vol. vol. 1, 2008.

[4] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Geor-
ganas, “A survey of Application-Layer multicast protocols,”
Communications Surveys & Tutorials, IEEE, vol. 9, no. 3, pp.
58–74, 2007.

[5] J. Liu, S. Rao, B. Li, and H. Zhang, “Opportunities and chal-
lenges of Peer-to-Peer internet video broadcast,” Proceeding of
the IEEE, vol. 96, no. 1, pp. 11–24, 2008.

[6] W. Gao and L. Huo, Challenges on Peer-to-Peer Live Media
Streaming, ser. Lecture Notes in Computer Science, 2007, vol.
4577/2007, pp. 37–41.

[7] W. P. K. Yiu, X. Jin, and S. H. G. Chan, “Challenges and
approaches in Large-Scale P2P media streaming,” IEEE Multi-
Media, vol. 14, no. 2, pp. 50–59, 2007.

[8] J. Price, “Christopher alexander’s pattern language,” IEEE
Transactions on Professional Communication, vol. 42, no. 2,
pp. 117–122, 1999.

[9] E. Setton, J. Noh, and B. Girod, “Rate-distortion optimized
video peer-to-peer multicast streaming,” in Proceeding of
the ACM workshop on Advances in peer-to-peer multimedia
streaming. Hilton, Singapore: ACM, 2005, pp. 39–48.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. J. O’Toole, “Overcast: reliable multicasting with an
overlay network,” in Proceeding of operating systems design
and implementation, 2000, pp. 197–212.

[11] X. Tu, H. Jin, X. Liao, and J. Cao, “Nearcast: A locality-
aware P2P live streaming approach for distance education,”
ACM Transactions on Internet Technology, vol. 8, no. 2, pp.
1–23, 2008.

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,” in SIGCOMM ’02: Proceeding of
the 2002 conference on Applications, technologies, architec-
tures, and protocols for computer communications, vol. 32.
ACM Press, Oct. 2002, pp. 205–217.

[13] D. Tran, K. Hua, and T. Do, “Zigzag: An efficient peer-to-
peer scheme for media streaming,” in Proceeding of IEEE
INFOCOM, vol. 2, 2003, pp. 1283–1292.

[14] J. Dinger and H. Hartenstein, “On the challenge of assessing
overlay topology adaptation mechanisms,” in Proceeding of the
Fifth IEEE International Conference on Peer-to-Peer Comput-
ing. IEEE Computer Society, 2005, pp. 145–147.

[15] F. Pianese and D. Perino, “Resource and locality awareness in
an incentive-based P2P live streaming system,” in Proceeding
of the 2007 workshop on peer-to-peer streaming and IP-TV.
Kyoto, Japan: ACM, 2007, pp. 317–322.

[16] P. Francis, “Yoid: Extending the internet multicast
architecture,” Tech. Rep., Apr. 2000. [Online]. Available:
http://www.aciri.org/yoid/docs/index.htm

[17] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming
live media over a Peer-to-Peer network,” Technical Report.
Stanford InfoLab, 2002.

[18] J. Liang, K. Nahrstedt, S. Chandra, and C. Griwodz,
“DagStream: locality aware and failure resilient peer-to-peer
streaming,” in Multimedia Computing and Networking, vol.
6071. SPIE, 2006.

[19] H. Guo, K. Lo, and C. Cheng, “Overlay networks construction
for multilayered live media streaming,” in Proceeding of the
Eighth IEEE International Symposium on Multimedia. IEEE
Computer Society, 2006, pp. 427–436.

[20] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized

object location, and routing for Large-Scale Peer-to-Peer sys-
tems,” Lecture Notes in Computer Science, vol. 2218, p. 329,
2001.

[21] Y. Guo, J. K. Zao, W. Peng, L. Huang, F. Kuo, and C. Lin,
“Trickle: Resilient Real-Time video multicasting for dynamic
peers with limited or asymmetric network connectivity,” in
Proceeding of the Eighth IEEE International Symposium on
Multimedia. IEEE Computer Society, 2006, pp. 391–398.

[22] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: high-bandwidth multicast in co-
operative environments,” in Proceeding of the nineteenth ACM
symposium on Operating systems principles. ACM, 2003, pp.
298–313.

[23] S. Birrer and F. E. Bustamante, “The feasibility of DHT-based
streaming multicast,” in Proceeding of the 13th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. IEEE Computer
Society, 2005, pp. 288–298.

[24] E. Lua, J. Crowcroft, and M. Pias, “Highways: Proximity
clustering for scalable Peer-to-Peer network,” in Proceeding of
the Fourth International Conference on Peer-to-Peer Computing
(P2P’04). IEEE Computer Society, 2004, pp. 266–267.

[25] M. Kleis, E. K. Lua, and X. Zhou, “Hierarchical Peer-to-
Peer networks using lightweight SuperPeer topologies,” in
Proceeding of the 10th IEEE Symposium on Computers and
Communications. IEEE Computer Society, 2005, pp. 143–
148.

[26] S. sheng Yu, X. wei Zheng, and J. li Zhou, “A P2P scheme
for live media stream multicast,” in Multi-Media Modelling
Conference Proceedings, 2006 12th Internationa, 2006, p. 4.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[28] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet:
high bandwidth data dissemination using an overlay mesh,” in
Proceeding of ACM symposium on operating systems principles.
ACM, 2003, pp. 282–297.

[29] F. Wang, Y. Xiong, and J. Liu, “mTreebone: a hybrid Tree/Mesh
overlay for Application-Layer live video multicast,” in ICDCS
’07: Proceeding of the 27th International Conference on Dis-
tributed Computing Systems. IEEE Computer Society, 2007,
p. 49.

[30] N. Magharei and R. Rejaie, “Understanding mesh-based peer-
to-peer streaming,” in Proceeding of the 2006 international
workshop on Network and operating systems support for digital
audio and video. Newport, Rhode Island: ACM, 2006, pp. 1–6.

[31] V. N. Padmanabhan and K. Sripanidkulchai, “The case for
cooperative networking,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems. Springer-
Verlag, 2002, pp. 178–190.

[32] W. T. Ooi, “Dagster: Contributor-aware end-host multicast for
media streaming in heterogeneous environment,” in Proceeding
of SPIE Multimedia Computing and Networking (MMCN),
2005.

[33] A. J. Ganesh, A. Kermarrec, and L. Massouli, “Peer-to-Peer
membership management for Gossip-Based protocols,” IEEE
Transactions on Computers, vol. 52, no. 2, pp. 139–149, 2003.

[34] X. Zhang, J. Liu, B. Li, and T. Yum, “DONet/CoolStreaming:
a data-driven overlay network for live media streaming,” in
Proceeding of IEEE INFOCOM, vol. 3, 2005, pp. 2102–2111.

[35] V. Vishnumurthy and P. Francis, “On heterogeneous overlay
construction and random node selection in unstructured P2P
networks,” in Proceeding of IEEE INFOCOM, 2006, pp. 1–12.

[36] V. Venkataraman, P. Francis, and J. Cal, “Chunkyspread: Multi-



11

tree unstructured Peer-to-Peer multicast,” Proceeding of The 5th
International Workshop on Peer-to-Peer Systems, 2006.

[37] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson,
A. C. Snoeren, and A. Vahdat, “Maintaining high bandwidth
under dynamic network conditions,” in Proceeding of the
annual conference on USENIX Annual Technical Conference.
Anaheim, CA: USENIX Association, 2005, p. 14.

[38] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava,
“PROMISE: peer-to-peer media streaming using CollectCast,”
in MULTIMEDIA ’03: Proceeding of the eleventh ACM inter-
national conference on Multimedia. ACM Press, 2003, pp.
45–54.

[39] F. Pianese, J. Keller, and E. W. Biersack, “PULSE, a flexible
P2P live streaming system.” in Proceeding of IEEE INFOCOM.
IEEE, 2006, pp. 1–6.

[40] X. Liao, H. Jin, Y. Liu, L. Ni, and D. Deng, “AnySee: Peer-to-
Peer live streaming,” in Proceeding of IEEE INFOCOM, 2006,
pp. 1–10.

[41] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN:
Simple traversal of user datagram Protocol(UDP) through net-
work address translators (NATs),” Mar. 2003.

[42] J. Rosenberg, R. Mahy, and C. Huitema, “Traversal using relay
NAT (TURN),” Feb. 2005.

[43] E. Setton and J. Apostolopoulos, “Towards quality of service
for Peer-to-Peer video multicast,” in Proceeding of IEEE Inter-
national Conference Image Process (ICIP), vol. 5, 2007, pp.
V–81 – V–84.

[44] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-
to-Pull Peer-to-Peer live streaming,” in 21st International Sym-
posium on Distributed Computing (DISC), Lemesos, Cyprus,
Springer LNCS 4731, Sept. 2007.

[45] Z. Liu, Y. Shen, S. Panwar, K. Ross, and Y. Wang, “Using
layered video to provide incentives in P2P live streaming,” in
P2P-TV ’07: Proceeding of the 2007 workshop on Peer-to-peer
streaming and IP-TV. ACM, 2007, pp. 311–316.

[46] H. Jin, X. Tu, C. Zhang, K. Liu, and X. Liao, “TCMM: hybrid
overlay strategy for P2P live streaming services,” in Proceeding
of Second International Conference of Advances in Grid and
Pervasive Computing, vol. 4459. Paris, France: Springer, 2007,
pp. 52–63.

[47] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and
Communications: Scalable video coding. Prentice Hall, Oct.
2001.

[48] E. Setton, J. Noh, and B. Girod, “Congestion-distortion opti-
mized peer-to-peer video streaming,” in Proceeding of IEEE
International Conference Image Process (ICIP), Atlanta, GA,
Oct. 2006.

[49] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
based congestion control for unicast applications,” in Proceed-
ing of the conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication. Stock-
holm, Sweden: ACM, 2000, pp. 43–56.

[50] R. Rejaie and A. Ortega, “PALS: peer-to-peer adaptive layered
streaming,” in Proceeding of the 13th international workshop
on Network and operating systems support for digital audio
and video. Monterey, CA, USA: ACM, 2003, pp. 153–161.

[51] D. Miras and G. Knight, “Smooth quality streaming of live
internet video,” in Global Telecommunications Conference, ser.
29, vol. 2. IEEE, 2004, pp. 627–633.

[52] W. Conner and K. Nahrstedt, “Securing peer-to-peer media
streaming systems from selfish and malicious behavior,” in
Proceeding of the 4th on Middleware doctoral symposium.
Newport Beach, California: ACM, 2007, pp. 1–6.

[53] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y. Wang, “P2P
video live streaming with MDC: providing incentives for re-

distribution,” in IEEE International Conference on Multimedia
and Expo, 2007, pp. 48–51.

[54] M. Guo and M. Ammar, “Scalable live video streaming to
cooperative clients using time shifting and video patching,” in
Proceeding of IEEE INFOCOM, vol. 3, Hong Kong, 2004, pp.
1501–1511.

[55] K. Hua, Y. Cai, and S. Sheu, “Patching: a multicast technique
for true video-on-demand services,” in Proceedings of the sixth
ACM international conference on Multimedia. Bristol, United
Kingdom: Proceeding of ACM multimedia, 1998, pp. 191–200.

[56] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The
feasibility of supporting large-scale live streaming applications
with dynamic application end-points,” in Proceeding of the
2004 conference on Applications, technologies, architectures,
and protocols for computer communications. Portland, Oregon,
USA: ACM, 2004, pp. 107–120.


