Flow-level State Transition as a New Switch Primitive for
SDN

Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, Ramesh Govindan

University of Southern California

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]; C.2.1 [Network
Architecture and Design]; C.2.4 [Distributed Systems]: Net-
work operating systems

Keywords

Software-defined Network; State Machine

1. INTRODUCTION

Software-defined networking has changed networking by sepa-
rating the control plane from the data plane. While there have been
many innovations on the controller applications for different net-
work management needs, most of these applications still rely on
flow-based rules in the data plane. These flow-based rules often
match on multiple packet header fields (e.g., source/destination IP
addresses), take predefined actions on the matching packets (e.g.,
dropping the packet, forwarding it to an outgoing port), or maintain
counters (e.g., the number of packets or bytes).

The controller saves flow-based rules to the switches in two modes:
proactive and reactive. In the proactive approach, the controller
populates rules in switches ahead of time for all the flows coming
to the switch. However, the proactive approach requires a priori
knowledge of events at switches, and how to handle these events.

The reactive approach supports more dynamic applications, but
has poor performance. In the reactive approach, switches often
send the events (e.g. the first packet of each flow) to the controller,
and the controller installs flow-based rules based on these events.
However, this introduces significant overhead (CPU, memory, etc.)
at the switch, high performance overhead (i.e., delay and through-
put), and scalability problems due to the limited communication
channel between the switches and the controller [1]]. For example,
consider a stateful firewall that denies unsolicited inbound traffic if
it cannot find a corresponding outbound flow in established state.
The controller becomes aware of the state of outbound flows by re-
ceiving the TCP signals (e.g., SYN, FIN) from the switch and de-
nies the unsolicited inbound flows and installs forwarding rules for
others upon receiving their first packet. This means that switches
have to send multiple packets of the same flow to the controller, and
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

SIGCOMM’14, August 17-22, 2014, Chicago, IL, USA.
ACM 978-1-4503-2836-4/14/08.
http://dx.doi.org/10.1145/2619239.2631439.

1) Task:=(StateMachine, InstanceMapping)

2) StateMachine:=({State}, {Transition}, {Action},Filter)

3) State:=(name, {Variable})

4) Variable:=(name, #bits)

5) Transition:=(StartState,Condition,TargetState,F)

6) Condition:=f; (StartState.Variables,Packet) —True|False
7 F: :f2 (State.Variables,Packet) =TargetState.Variables
8) Action:=(State,Condition, Instruction,Priority)

9) Filter:=f3 (Packet) —True|False

10) InstanceMapping:=f4 (Packet)—Index

Table 1: FAST abstraction

the controller has to reactively change the flow-level rules based on
these incoming packets.

To reduce the controller’s involvement in many dynamic appli-
cations, many works recognize the limitations of flow-based rules
and have proposed specific optimizations in the data plane. De-
voFlow [1] reduces the controller overhead by introducing rule cloning
and measurement triggers. OpenFlow 1.3 supports rate limiting by
allowing switches to track flow rates and tag/drop excess traffic
without the controller involvement. Open vSwitch adopts learn ac-
tions for software switches that can install new rules when traffic
matches an old one.

Instead of proposing yet another specific optimization, we aim
at identifying a new generic data-plane abstraction to replace flow-
based rules. We observe that many networking tasks can be ex-
pressed as local state machines over a flow or an aggregate of flows.
For example, to implement the stateful firewall, the controller may
install a state machine on the switch to keep track of TCP states.
The associated action on each state can allow/deny inbound traffic
based on the TCP state.

We propose FAST (Flow-level State Transitions) as a new switch
abstraction. FAST allows the controller to proactively program
state transitions, and allows the switches to run dynamic actions
based on local information. FAST supports a wide range of dy-
namic applications and can be easily implemented with today’s
commodity switch components.

2. DESIGN & EVALUATION

FAST includes three parts: (1) an abstraction that allows oper-
ators to program their state machines for a variety of applications;
(2) a FAST controller that translates state machines to the data
plane API and manages the interaction of local state machines with
network-wide tasks; (3) a FAST data plane that includes a pipeline
of tables to support state machines with commodity switch compo-
nents. The detail of each component comes next.

Abstraction: Table[Tldescribes how a task is defined in FAST us-
ing state machines. The parentheses represent a tuple, curly brack-
ets show a set, and right arrows define the output of a function. We
now highlight the important aspects of the task definition: States
may require storing counters that represent many states over the

TCP state machine

8 ______ SYN @ ACK ’FINACK

]
A4

~N

FAST controller

o) ()
Switch agent Switch agent

Network

Figure 1: FAST architecture

variable values. Later, the controller can map the state names and
their variables to a bit string representing an extended set of states
where each counter value makes a new state. Transitions leverage
a guard condition which can match on state variables. Actions ex-
ecute a standard OpenFlow instructions. The programmer can also
filter the traffic going through a set of state machines, and finally
the abstraction includes a state mapping function over packet head-
ers to map a packet to the right state machine instance.

Controller: The FAST compiler translates user’s state machine
definitions to the actual code (switch agents) that can run state ma-
chines at individual switches (Figure [T). It uses the knowledge
of topology and switch constraints to make switch agents specific
to the switch capabilities and configures them to install the state
machines only on a subset of switches (e.g., ingress). A switch
agent has three responsibilities: (1) It converts state machines to
the switch API. (2) If the switch does not support a required feature
to implement a state machine, the switch agent falls back to the
reactive approach and performs part of the state machine by receiv-
ing packet-ins. (3) If a network-wide task (e.g., traffic engineering)
requires to be informed of a local event (state change), the switch
agent programs the switch to send packet-ins to report to the task.

Data-plane: Figure 2| describes FAST data plane on top of the
current flow-based multi-table architecture. While this is not the
only architecture to support state machines, especially, in the soft-
ware switches, we believe it is a transition step from the flow-based
rules to a state-machine based data plane. We use TCP state ma-
chine as a running example to illustrate the components of state ma-
chines, which can be implemented with hardware currently avail-
able on commodity switches. The design contains four tables. The
state machine filter table is shared among multiple types of state
machines, but the other three are specific to each state machine def-
inition. The state table keeps track of state machine instances and
is implemented as a hash-table. We decouple actions from state
transitions for two reasons. First, it can be more compact: a single
entry in action table can cover the actions in multiple states. For
example, regardless of whether the state machine is in the Estab-
lished or Initl state, one can specify the same action (e.g., forward
to port 1). More important, however, is that we need this decou-
pling for our problem domain. While there is one instance of a
TCP state machine, the action corresponding to a flow being in a
specific state may depend on the flow itself (e.g. output port). The
switch agent installs a state machine on data plane by adding a rule
in the filter table, specifying the hash fields and the initial state for
the state table, and installing state transition rules and action rules
in the corresponding tables.

State machine filter

State machine
Packet——» Match index
1100** 0 (UDP)
Packet 100*** 1(TCP)
State table
Pick fields Packet, Index State
and hash H(p) 0 Est
| 1 Init2 (---:
Packet, State 2 Est :
State transition table Up(;Iate
Match State Next state state
> Fin Est Close1 H
* Est Est :
— Ack from src Init2 Est hamaed
* Init2 Init2
Packet, New state Action table
Match State Action
Inward Close Drop
= Inward * Port 1 ~Packet®
Qutward * Port 2
Figure 2: Implementing TCP state machine in FAST data plane
Approach | Mean 5th 95th
Proactive 1.85 145 3.68
Reactive 848 | 57.84 | 109.7
FAST 3.02 1.34 5.93

Table 2: Comparing flow completion delay (ms) for 100 experiments

We have implemented a FAST prototype with POX and Open
vSwitch. At the controller side, a switch agent proactively installs
state machines using OpenFlow protocol. We have instantiated
the state machines and changed their states leveraging the Open
vSwitch learn action. We use TCP state machine as an example.
The state machine transits on SYN, SYNACK, ACK, FIN, and FI-
NACK flags; thus we added the matching on TCP signals in Open
vSwitch and OpenFlow commands. Table [2] compares the delay
of going through the TCP state machine for a flow as the time be-
tween initiating a connection with only one data packet until termi-
nating it. FAST has much smaller delay comparing to the reactive
approach because there is no need to send the signals to the con-
troller. However, due to the overhead of calculating the hashes and
updating the state table, its delay is larger than simple proactive ap-
proach. Note that the proactive approach cannot track TCP state
machine. We also compared the throughput of an iperf connection
in FAST vs. proactive approach. As the iperf connection remains
in the Established state, this shows the overhead of only hashing
and checking the current state. The throughput of FAST is very
close to proactive approach (7.8 Gbps vs 8.2 Gbps, respectively
with standard deviation of 0.2Gbps over 30 tries).

To summarize, compared to the primitive of flow-based rules,
FAST can support more flexible networking tasks, improves the
performance and scalability of the SDN controller, and can be eas-
ily implemented with commodity switch components. The future
work at the controller side includes partially installing, consistent
installing, verifying, and composing state machines. At the data
plane, we plan to use richer set of features at switches such as flex-
ibly parsing the packet header and to optimize memory usage of
state machines to fit in switches with limited resources.

3. REFERENCES

[1] A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance
networks. In SIGCOMM, 2011.

	Introduction
	Design & Evaluation
	References

