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ABSTRACT
Computing-as-a-service is here to stay, and its benefits, such
as resource elasticity and efficient utilization, have been well-
documented. However, little attention has been paid to ser-
vice models for computing-as-a-service. Existing service
models are relatively simplistic in that they provide little or
no predictability in job finish times and allow for limited
service differentiation. In this paper, we propose a new ser-
vice model for shared clusters, MRM, that addresses these
shortcomings. MRM estimates job processing times conser-
vatively to provide predictability in finish times, and uses
pricing to incentivize users to contribute slack so that delay-
sensitive jobs can be accommodated. We have instantiated
MRM in the context of shared MapReduce clusters. Our
results demonstrate that MRM can provide predictability of
job finish times and differentiated service under a variety of
user demands (workloads).

1. INTRODUCTION
Computing-as-a-service has been evolving steadily. To-

day, several enterprises host shared computing clusters for
use by their employees (e.g., Google’s cloud [27]), and sev-
eral providers now offer computing services publicly (Ama-
zon’s web services (AWS), Microsoft’s Azure). Moreover,
service providers today provide computing abstractions at
various levels: bare virtual machines, specialized languages
and runtimes (e.g., for massively-parallel data processing—
MapReduce [10], Dryad [15]), web services, and so on. For
example, Amazon offers both bare virtual machine clusters
as well as MapReduce clusters [2].

However, despite the emergence of several computing ser-
vices and the wide range of abstractions they offer, little
attention has been paid to the service model: the interface
between the user and the operator that determines the type
of service provided. Currently, relatively simplistic models
seem to be the norm, where the operator undertakes to pro-
vide resources to complete a job, but does not provide any
assurance of when the job will be completed (predictability)
or provides limited ways in which users can ask for differ-
ent levels of service (service differentiation). For instance,
AWS and Azure use a “rental” based service model, in which
users can choose from a range of virtual machine instances
(of different sizes) and pay a fixed rate for each instance;
the system makes no statement about when jobs finish. On
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the other hand, most grid-computing infrastructures charge
users based on resource usage (e.g., node hours), and pro-
vide differentiation using a few discrete priority queues that
are differentiated by job size and duration; low priority jobs
have no guarantees on when they finish.
Our contributions. In this paper, we explore the design of a
service model that attempts to provide both predictability in
finish times and the capability for differentiation by allowing
users to select desired finish times (e.g., choosing an earlier
finish time for a delay-sensitive job). Our approach, called
MRM (for Map-reduce Market), achieves these goals by en-
abling a service model in which a user is presented with a
price-deadline curve at the time when she submits a job. The
user can choose an appropriate point in this price-deadline
curve based on the delay-tolerance of her job and her current
wealth. This, in combination with deadline-based schedul-
ing, ensures both predictable finish times and provides users
with a choice of finish times.

To enable such a service model, we develop two key com-
ponents. First, to ensure predictability, we estimate a pri-
ori the processing time of a job, at the time it is submitted
for execution. To do so, we characterize the accuracy with
which various analytical methods can estimate job process-
ing times, and design a method for computing feasible finish
times for a job. MRM computes the feasible finish times for
a job based on the current system load and its estimate of
the computing resources required by the job, which is deter-
mined based on resources consumed by prior executions of
similar jobs. MRM then restricts the choice of deadlines for
a job to be within the range of feasible finish times.

Second, to achieve service differentiation, MRM prices
job completion deadlines. By charging more for earlier dead-
lines, MRM encourages users of delay-tolerant jobs to select
deadlines later than the earliest possible finish time. Thereby,
this deadline pricing mechanism incentivizes users to offer
slack in the execution schedule. This slack can be used to
accommodate earlier finish times (than possible with FCFS)
for later arrivals of delay-sensitive jobs.

Any service model must be designed in the context of
a computing abstraction, as details of prices and load de-
pend on the abstraction. We have instantiated MRM for
shared MapReduce [10] clusters. Given the widespread use
of such clusters, and the lack of predictability and service
differentiation in these clusters, we believe that MRM ad-
dresses an important and urgent need. We believe MRM
can be extended to other massively-parallel programming
frameworks inspired by MapReduce, such as Dryad [15], as
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Figure 1: Overview of MRM.

well as higher-level frameworks such as DryadLINQ [33],
Hive [3], and Pig [1].

Finally, experiments using our MRM prototype on a 40
server cluster reveal that MRM can achieve near-perfect pre-
dictability in realistic scenarios. Furthermore, our trace-driven
simulations show that, by incentivizing users executing delay-
tolerant jobs to choose looser deadlines, MRM reduces the
waiting time of delay-sensitive jobs, allowing 35% of them
to jump ahead of delay-tolerant jobs. Despite inaccuracies in
the estimation of job processing times, MRM achieves this
service differentiation while keeping the deadline violation
rate comparable to that of the FCFS scheduler. In contrast,
the priority scheduler—another strategy that enables expe-
dited processing of delay-sensitive jobs—results in over a
30% deadline violation rate for delay-tolerant jobs.

The rest of this paper is organized as follows. We pro-
vide a brief overview of MRM in Section 2. We discuss
how MRM determines feasible finish times by estimating
job processing times in Section 3, and we present MRM’s
pricing strategy in Section 4. Then, in Section 5, we discuss
how MRM offers predictability and service differentiation in
combination. In Section 6, we present the results from our
experiments to evaluate MRM’s performance. We discuss
related work in Section 7, and conclude with a discussion of
future work in Section 8.

2. MRM GOALS AND OVERVIEW
In this section, we first describe MRM’s design goals and

contrast it with current solutions for job scheduling. We then
provide an overview of MRM, and finally discuss the chal-
lenges involved in its design and implementation.
Design goals. We design MRM for clusters that provide
computing-as-a-service; users submit jobs that are then sched-
uled on the cluster. We define a job more precisely later;
for now, a job is a distributed computation on the cluster.
Two goals guide our design of MRM: (1) to provide users
with predictability in finish times of jobs, and (2) to enable
the system to differentiate between delay-sensitive jobs and
delay-tolerant ones.

Current mechanisms for scheduling jobs in shared clus-
ters (e.g., FCFS, priority queues, and fair scheduling) can
meet one, but not both design goals. Under the FCFS pol-

icy, assuming that the runtimes of jobs are known or can be
estimated, we can easily estimate the finish time of a job
from its position in the queue. However, FCFS does not
provide differentiated service: delay-sensitive jobs can get
stuck behind large jobs and experience high waiting times,
even if those large jobs are delay-tolerant. Priority queue-
ing can be used to implement differentiated service levels
for jobs but may result in unbounded finish times for lower-
priority jobs. Finally, fair scheduling supports job differen-
tiation through weights but cannot ensure tight deadlines; a
job’s fair share may vary with the load, resulting in unpre-
dictable finish times.
MRM overview. In contrast, MRM achieves predictability
and differentiation by following the procedure illustrated in
Figure 1. When a job is submitted by a user, MRM takes
the characteristics of the job (available, for example, based
on prior executions of similar jobs) into account in order to
first compute an estimate of the job’s runtime, say R seconds.
MRM may not be able to complete the new job R seconds
from the current time because there may be other jobs that
are already queued up for execution on the cluster. There-
fore, MRM computes the earliest feasible finish time for the
new job by using its estimated runtime of the new job in
combination with the runtimes and negotiated deadlines of
jobs that it had previously admitted.

However, if MRM agrees to set this earliest feasible finish
time as the deadline of the new job, then jobs get executed as
per a FCFS schedule. Thus, to ensure service differentiation,
MRM negotiates a deadline with the user who submitted the
job. MRM associates a price with each of its feasible finish
times for the job, thus defining a price-deadline curve for
it. Finish times that are farther into the future have lower
associated prices, thus incentivizing a user who submits a
delay-tolerant job to choose a deadline that is later than the
earliest feasible finish time.

The key innovation in MRM is the design of the methods
by which it computes and prices feasible finish times. On the
one hand, accurate estimation of feasible finish times enables
predictability. On the other, judicious pricing of deadlines
incentivizes users who submit delay-tolerant jobs to choose
loose deadlines, thus enabling delay-sensitive jobs to be ex-
ecuted ahead of them without violating their deadline. We
describe MRM’s estimation of feasible finish times in Sec-
tion 3, and its pricing mechanism in Section 4, and how we
combine the two in Section 5.

3. PREDICTABILITY
In this section, we first use simple queuing models to ob-

tain insights for achieving predictable finish times. Then, we
describe how to estimate job processing times. In the next
section, we describe how to achieve service differentiation,
and then use these insights and estimation methods in Sec-
tion 5 to design a method for predicting job finish times in
the presence of service differentiation.

2



3.1 Modeling Predictable Finish Times
The simplest queueing model for clusters executing MapRe-

duce jobs is two queues connected in tandem with the first
queue representing the Map phase of a job and the second
the Reduce phase [28]. However, since a large fraction of
MapReduce jobs submitted to real-world production clus-
ters do not have a Reduce phase [34], we can model them
with a single queue. We first present results for the single
queue case because they are easier to explain and capture key
take-aways; we then present the results for tandem queue for
concreteness.

Single queue: Map-only jobs
Notation and Problem Statement. Consider a scenario
with Poisson job arrival rate λ , and i.i.d. exponentially dis-
tributed map phase duration with mean µm. We can then
model the cluster as an M/M/1 queue with FCFS scheduling;
we use M/M/1 instead of M/M/k for simplicity of analysis,
but our insights from a M/M/1 queue apply in case of M/M/k
as well. Let ai, fi and di be the arrival, finish and deadline
time, respectively, of job i. We define Ti = fi−ai as the so-
journ time for job i. Suppose that we assign its deadline to
di = ai +yi, i.e., the scheduler agrees to finish the job within
yi time units after its arrival. This means that the sched-
uler estimates the sojourn time as yi. For jobs that finish
before their deadline, i.e., fi < di, we define their earliness
as ei = di− fi = yi−Ti.

We can characterize the predictability of this simple queue-
ing model using its deadline violation rate, defined as the
fraction of jobs which violate their deadline. It is trivially
possible to achieve no violations by assigning each job an
infinite deadline; we consider such a system to be not very
useful. Rather, our goal is to minimize the earliness of jobs
while bounding the deadline violation rate to β .

Predictability and Queue Occupancy. One way to es-
timate the deadline of a job is to estimate its sojourn time.
One can conservatively use a fixed sojourn time estimate for
all jobs, and set the sojourn time estimate such that the dead-
line violation rate bound is met. In this section, we show that
this approach results in higher earliness than one which takes
into account the estimates of the duration of jobs already in
the queue.

With a fixed sojourn time estimate of yi = x for all jobs,
and assuming map-only jobs with λ < 1 and µm = 1, the
lower bound for x assuming a deadline violation rate of β is
given by:

P(T > x) = e−(1−λ )x ≤ β ⇒ x≥ −log(β )
1−λ

(1)
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Figure 2: M/M/1 deadline prediction

For a given β and its corresponding x, the average earliness
is:

Es1 = x−E[T |T ≤ x] = x−
∫ x

0
t

fT (t)dt
FT (x)

(2)

= x− 1
1−λ

+
xe−(1−λ )x

1− e−(1−λ )x
(3)

Since λ < 1 and Es1 is an increasing function of x, we
pick the lower bound for x in Eq. (1) to minimize the average
earliness subject to a deadline violation rate of at most β :

Es1 ≥
log(β )
β−1 −1

1−λ
(4)

Clearly, as job arrival rate λ increases, both x and average
earliness increase, so the system will be forced to choose
large x in order to satisfy the deadline violation rate bound.

Now consider an approach which sets the sojourn time
estimate of a new job, yi, using the duration estimates of
jobs already in the queue (recall that we assume an FCFS
scheduler). Let xk denote the conditional sojourn time of
a job, given that k jobs are ahead of it in the queue. This
conditional sojourn time for map-only jobs (a single M/M/1
queue) has an Erlang(1,k+1) distribution. It is then possible
to find xk to achieve a given deadline violation rate β :

∞

∑
k=0

P(T > xk|k jobs in system)P(k jobs in system)

=
∞

∑
k=0

(
k

∑
n=0

1
n!

e−xk xn
k

)
λ

k(1−λ )≤ β (5)

One way to select xk to satisfy Eq. (5) is to keep the vio-
lation probability smaller than β for every k. 1 Then Eq(5)
holds irrespective of the arrival rate because ∑

∞
k=0 βρk(1−

ρ)≤ β . We solved Eq. (5) for xk numerically, and we plot its
values for different k and β in Figure 2(a). The linear curves
suggest that we can approximate xk using a linear function of
k and β . We estimate xk(β ) = f (β )× (k+1), with f (β ) =
b0β + b1 obtained using non-linear least square regression.
We achieve R2 accuracy of 0.998 for f (β ) =−0.36β +1.16.
The negative slope of f (β ) (i.e., b0 = −0.36) is because, if
we can tolerate a higher deadline violation rate β , we can set
xk to a smaller value (xk = 0 for β = 1).
1 This approach is also usable for any arrival process as it ignores
P(k jobs in system).
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We can also compute the average earliness when dead-
lines are set based on conditional sojourn time as per Eq. (6)
and (7). We compute the minimum xk satisfying Eq(5) and
compare the average earliness of the fixed sojourn time es-
timates to those offered by the approach that takes queue
occupancy into account (Eq. (6) and (7)) in Figure 2(b).

Ed1 =
∞

∑
k=0

E [xk−T |N = k+1,T ≤ xk]ρ
k(1−ρ) (6)

E[xk−T |N = k+1,T ≤ xk] = xk−
∫ xk

0
t

fT (t|N = k+1)
FT (xk|N = k+1)

dt

= xk− (k+1)+
e−xk xk+1

k

k!(1−∑
k
n=0

e−xk xn
k

n! )
(7)

Going one step further, we can set the sojourn time esti-
mate, yi, based on the specific set of jobs in the queue, Qi,
when job i arrives. This approach works with any arrival
process and job duration distribution, assuming we can cal-
culate the conditional sojourn time distribution – the distri-
bution of the sojourn time of a job given the current jobs in
the queue:

TQi = T |jobs Qi in the queue at arrival of i (8)

In this case, we can always find yi such that P(TQi > yi)≤ β .

Computing the Sojourn Time. How can one estimate
distribution of the conditional sojourn time for a new job ar-
rival? Assume that, for each job we can estimate its process-
ing time with a Gaussian error. (We can do this, for exam-
ple, by using historical processing times for jobs with similar
characteristics, as discussed in the next section.) This means
that the processing time of each job will be a Gaussian ran-
dom variable with mean equal to the predicted value. Then,
we can compute the joint distribution (JD) of the processing
time distributions of all the jobs in the queue, together with
the processing time distribution of the new arrival. This joint
distribution is the conditional sojourn time distribution. As-
suming that the errors of the job processing time estimation
are independent, the conditional sojourn time is a Gaussian
random variable with mean (variance) equal to sum of the
mean (variance) of the estimated duration of the jobs in the
queue and the new job. For example, to ensure a maximum
violation rate of 5%, we can estimate the sojourn time as the
mean plus 1.64 standard deviations of the joint distribution.

Tandem queues: Jobs with Map and Reduce tasks
We can derive analogous bounds on earliness for jobs with

map and reduce phases using a model with two M/M/1 queues
in tandem. With tandem queues, the sojourn time T = Tm +
Tr where Tm is the sojourn time in the first (map) queue and
Tr is the sojourn time in the second (reduce) queue. From
Jackson’s theorem [9], we know that the number of jobs in
the two queues in tandem are distributed as if each queue is
M/M/1. Hence, Tm ∼ Exp(µm−λ ) and Tr ∼ Exp(µr−αλ ),
0≤ α ≤ 1.

Fixed Sojourn Time estimates . For yi = x, i.e. fixed so-
journ time estimates, we only need to know the distribu-
tion for T which is Hypo-exponential(Tm,1,Tr,1). A Hypo-
exponential random variable is a sum of multiple exponen-
tial random variables each with their own rate. Here, it has
one random variable with rate Tm and another with rate Tr.
Equation 9 shows the violation bound for the case that Tm 6=
Tr. 2

P(T > x) =
Tme−Trx−Tre−Tmx

Tm−Tr
< β (9)

Putting the Hypo-exponential PDF in eq. (2) the earliness
formulation will be as eq. (10). We compute minimum x
numerically using eq. (9) and put it in eq. (10) to compute
minimum earliness while preserving the deadline violation
bound. Figure 3 shows the earliness with fixed sojourn time
estimates when the deadline violation rate β = 5% and 23%
of jobs have a reduce phase.

Es2 = x−
TmTr(

xe−Tmx

Tm
− xe−Trx

Tr
+ xe−Tm−1

Tm
2 − xe−Tr−1

Tr
2 )

Tm−Tr−Tme−Trx +Tre−Tmx
(10)
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Figure 3: Tandem queues

Sojourn time based on queue occupancy . The sojourn
time of a job with reduce phase observing km and kr jobs
ahead of it in the map and reduce queues, respectively, fol-
lows Hypo-exponential(µm,km+1,µr,kr+1). Using the same
approach as for map-only jobs, we use conditional sojourn
time distribution based on the number of jobs in the map and
reduce phases, km and kr. We numerically compute the mini-
mum yi = xkm,kr and put it in the earliness formula computed
based on the phase-type definition of Hypo-exponential dis-
tribution [23]. Figure 3 compares the earliness for the fixed
sojourn time estimates against the approach that queue oc-
cupancy into account.

From Figures 3 and 2(b), we can see that the latter ap-
proach offers a qualitatively different behavior of earliness
times as a function of arrival rate, so in this paper we only
consider approaches that assign deadlines based on queue
occupancy. However, to use this approach, we need to esti-
mate job processing time and find the standard deviation of
error. Next, we discuss how to do this in practice.

2 Otherwise, we can just use Erlang distribution
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3.2 Estimating Job Processing Times
A typical MapReduce job consists of three pipelined phases:

Map, Shuffle, and Reduce. The Map and the Reduce phases
can consist of multiple independent tasks that execute in par-
allel. The output of the Map phase is partitioned into (dis-
joint) bins which are stored locally. The Shuffle phase han-
dles this partitioning and transport of Map outputs to rele-
vant Reduce tasks. To estimate the processing time of such
jobs, we first need to estimate the duration of the Map, Shuf-
fle, and Reduce phases. Here, we focus on performing this
estimation at the granularity of a job with a single Map and
Reduce phase; we defer the estimation of processing times
for more complex data-flow graphs to future work.
Overview. For jobs that are repeatedly executed, data from
multiple runs can be used to estimate an accurate bound on
their processing time [11]. Another scenario that arises in
practice is users submitting similar jobs. We can define sim-
ilarity along two dimensions: (1) number of map and reduce
tasks3, and (2) type of a job. A job’s type is determined by
the function performed by its map and reduce tasks. For in-
stance, the map and reduce tasks of a job for sorting data
process data differently compared to their counterparts in a
job that computes the frequency of occurrence for each word
in a set of documents. Hence, all data sorting jobs are of the
same type, say sort, which is different from the type of word-
count jobs used for computing word frequencies.

In this section, we demonstrate that we can estimate the
processing time of a job on its arrival based on statistics of
prior executions of similar jobs on the cluster. In our ex-
periments, we have observed that the processing time of a
MapReduce job depends upon three features: (1) the num-
ber of Map tasks, (2) the number of Reduce tasks, (3) the
size of the input and output of the Map and Reduce tasks. We
model the size of a Map task’s output, and a Reduce task’s
input and output using two features—map-reduction factor,
and reduce-reduction factor. The map-reduction and reduce-
reduction factors measure the average reduction in input size
after the Map and Reduce phase, respectively. They act as
proxies for a job’s type, e.g., in case of a grep job search-
ing for a “rare” pattern in a large volume of text, the Map
phase will filter out most of the original input, and thus,
have a large data reduction factor, whereas there is no re-
duction in the data size after Map and Reduce phases for a
sort job. From a resource requirement perspective, the two
reduction factors determine the contention for network and
disk I/O, and the number of Map and Reduce tasks determine
the computation resources needed across the cluster.

In MRM, these features collectively form a feature space 4,
and each job represents a point in this feature space. When

3 In Hadoop, the number of map tasks is proportional to the input
size, e.g., if a Hadoop cluster is configured with default settings
(including HDFS block size equal to 64MB), then a job processing
a 640MB input file will have 10 map tasks.
4 Other features may also be important in estimating processing
times, e.g., jobs that read compressed input might differ in overall

users submit a job, they must specify the feature vector asso-
ciated with this job; users can obtain this information from
trial runs of the job.

Given a job’s feature vector, MRM predicts the job’s pro-
cessing time using a statistical model. This model is con-
structed using training data obtained from a live cluster. Specif-
ically, after a job’s completion, MRM obtains: a) task com-
pletion times for each of the three MapReduce phases of the
job, and b) values for the map and reduce reduction factors.
MRM adds these processing time samples to its database of
statistics for previously executed jobs with a corresponding
set of features, and uses these samples to train a statistical
model for processing time prediction.
Processing time estimation methods. To achieve predictabil-
ity, MRM must estimate a job’s processing time as well as
the standard deviation of estimation error (refer to Section 3.1).
There are several classes of methods that we can choose
from: linear regression methods (e.g., ordinary least squares
(OLS) and ridge regression), canonical correlation analy-
sis (CCA) based methods, and Gaussian Process (GP) based
methods. However, only two of these methods (OLS and
GP [8, 25]) enable us to compute the standard deviation of
the prediction error in a principled way, and hence, are more
relevant for MRM. We present a detailed comparison of all
methods in Section 6.1.

We choose to use GP-based processing time estimation
in MRM. This is because, unlike OLS, which captures the
linear relation of output on training features and minimizes
the mean square error, Gaussian process regression does not
assume any parametric representation for the function map-
ping job features to processing times. Instead, it tries to infer
a distribution over functions mapping features to process-
ing times from measurement data [8]. Informally, given the
value of an unknown function f at an finite, but arbitrary, set
of points, say x1, . . . ,xn, GP assumes that the probability dis-
tribution p( f (x1), . . . , f (xn)) is jointly Gaussian with mean µ(x)
and covariance Σ(x). We can compute the mean and the co-
variance matrix from measurement data, and then use it to
estimate the value of f at a new point x∗. In MRM’s case, xi
represents the features for job i and f (xi) is the processing
time for a phase. As we show later in Section 6.1, GP-based
estimation enables us to accurately predict the processing
times of MapReduce jobs.

4. SERVICE DIFFERENTIATION
Our discussion in the previous section showed how MRM

can achieve predictability under FCFS scheduling by esti-
mating the deadline for a job based on its conditional so-
journ time. However, FCFS scheduling does not provide any
service differentiation. To provide service differentiation,
MRM requires at least some jobs to offer slack by picking
a deadline that is later than their earliest finish time. MRM
incentivizes jobs to offer slack by associating every feasi-

processing time from jobs that read uncompressed input. We leave
an exploration of the complete feature space for future work.
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ble deadline for a job with a corresponding price. Hence, a
delay tolerant job is likely to accept a deadline that is later
than its earliest feasible finish time. MRM can then provide
service differentiation, without compromising predictability,
by allowing delay-sensitive jobs—which are willing to pay
more to finish earlier—to skip ahead of other jobs waiting
in the queue. However, when enqueued jobs have offered
slack, computing the earliest feasible finish time for a new
arrival is more complex than in case of FCFS with no slack.

In this section, we study the factors that impact the design
of a pricing function (Section 4.1), and then propose a pric-
ing function for MRM (Section 4.2). Later, in Section 5, we
discuss how to compute the earliest finish time for jobs in the
presence of slack using a prediction interval for processing
time and backfilling.

4.1 Theoretical intuition for pricing
Consider the single queue model for map-only jobs with

the following simplifications: time is slotted, and any de-
lay sensitive/delay tolerant job can be processed in one time
slot. We can represent the state of this queue using a bit
string with each bit representing a slot: the least-significant
bit represents the current slot, and bit i is 1 if there is a job
waiting in the queue with deadline i, and 0 otherwise. For
example, a bit vector 10100 at t = 0 denotes two jobs in the
queue with deadlines t = 4 and t = 2. At the beginning of
each slot, multiple delay tolerant jobs can arrive, each with a
probability of p; the precise arrival process for delay tolerant
jobs is not relevant for our analysis. To be conservative, we
assume that, in a given slot, each delay-sensitive job arrives
after delay-tolerant jobs. A delay-sensitive job always wants
to be processed in its arrival slot, and is willing to pay $1
for it. A delay sensitive job that arrives during a busy slot 5

cannot be serviced; we refer to such a job as being rejected
by MRM. Users who submit delay-tolerant jobs are offered
a price vs. deadline curve, and pick a deadline based on how
much they are willing to pay for it. However, a user who
submits a delay-tolerant job always wants to pay at most c,
an amount strictly less than $1, even when MRM can pro-
cess the job in the slot in which it arrives.

In this model, the operator risks losing revenue whenever
the current slot is busy (i.e., least significant bit is 1), because
if a delay sensitive job arrives, it will be rejected. Note that
the current slot is busy only because we need to execute a de-
lay tolerant job (that arrived in the past) to meet its deadline.
Rejecting a delay sensitive job causes a loss of $1, and since
delay tolerant jobs only pay an amount strictly less than $1,
the operator loses some revenue. However, since a delay
sensitive job arrives with probability p, the expected revenue
loss when the server is busy processing a delay tolerant job
during the current slot is p. Hence, to avoid losing revenue,
the operator should charge the delay tolerant job $p.

5 A slot is busy, i.e., its bit value is 1, if MRM must run a job in it
to meet its deadline.
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Figure 4: M/M/1 deadline prediction

While it is straightforward to compute that p is the rev-
enue loss from the current slot being busy, the general prob-
lem of computing the revenue loss from assigning slot i as
the deadline for a delay tolerant job is complex. For exam-
ple, consider the bit vector 10000. It denotes one job in the
system at current time t = 0 with deadline at t = 4. There
will be a rejection in this case only if deadline sensitive jobs
arrive at all 5 slots. This is because, if there is no arrival for
any slot 0 to 3, then a work-conserving server will finish the
delay tolerant job earlier than its slot 4 deadline. The prob-
ability of rejecting a deadline sensitive job conditioned on
slot 4 being assigned as deadline to a delay tolerant job is
therefore p5. Hence, a delay tolerant job must pay p5, where
p≤ 1, as the price for having slot 4 as its deadline.

Figure 4 shows the price vs. deadline curve for three dif-
ferent bit strings for p = 0.3. Timeline 1 has the lowest price
for each slot because the queue is empty while Timeline 2
has lower price than Timeline 3 as it has more empty slots
and has therefore lower load. Hence, the price function is
lower for larger slack but is non-linear. Notice the flat prices
for slots 4–7 for Timelines 2 and 3, and 12–15 for Time-
line 12. The price for these slots is the same as the price for
the earliest empty slot before them—slot 3 and slot 11, re-
spectively. This is because a delay tolerant job is allowed to
select a slot in 4–7 or 12–15 as its deadline, but since these
slots have previously been selected as deadlines, MRM must
use slot 3 or 11 to meet this deadline.

Algorithm for computing the price curve. A brute force
approach to find the probability of rejection is to find the
number of rejections before and after scheduling a slot for
any pattern of deadline-driven job arrival. The computa-
tion complexity of the algorithm is O(n2n) for each slot in a
timeline with n slots. To describe our algorithm with com-
putation complexity of O(n), we define two concepts Ca-
pacity (C) and Overflow (O). Suppose that we divide a bit
string B into left, BL, and right, BR, bit strings from an ar-
bitrary point6. The capacity of bit string BR, CBR , is the
number of slots that the server can run a job from BL in
slots of BR because it could not remain idle. The overflow
of bit string BL, OBL is the number of background jobs in

6We omitted the discussion about the boundary cases for brevity.
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BL that should run in BR to have no rejection. For exam-
ple, the capacity of 00000 is 5− k if k deadline-driven jobs
come, but its overflow is always 0. In contrast, the capacity
of 11111 is always 0, and its overflow is k if k deadline-
driven jobs come. We can define capacity and overflow of
a bit string recursively: CB = CBL +max[CBR −OBL ,0] and
OB =OBR +max[OBL−CBR ,0]. This means that the capacity
of B is the capacity of BL plus whatever capacity remains on
BR after it accommodates overflow of BL. The correspond-
ing argument for overflow is similar. Note that as CB ≤ |B|
and OB ≤ |B| where |B| is size of bit string, the complexity
of finding CB and OB in a divide-and-conquer algorithm is
O(n3). However, notice that if either |BL| = 1 the complex-
ity of calculating the capacity will be O(n). So if we sweep
from right to left adding one bit at a time to calculate capac-
ity of B the complexity will be O(n2). We do the same from
the left to right to calculate the overflow.

Now that we know a way to calculate the capacity and
overflow of a bit string, we discuss the algorithm to find the
probability of additional rejection because of allocating slot
k to a background job. We define left bit string L as bits left
to slot k and R for the right slots. Two cases may happen:
First, if no deadline driven job come at slot k, it was empty
if we did not allocate it. So, it would be required only if the
overflow of left bit string is larger than the capacity of the
right one, OL > CR. Second, if a deadline driven job come
at slot k, it will be rejected unless the scheduled background
job ran before in R. So the background job will use one
capacity of R, and we have an additional rejection if OL ≥
CR. Eq. (11) summarizes the probability formula for both
cases and can be calculated in O(n).

(1− p)
0R

∑
m=0

P[OL >m]P[CR = i]+ p
0R

∑
m=0

P[OL≥m]P[CR = i]

(11)

We cannot reduce the order of algorithm for an arbitrary
slot from O(n2). However, we are calculating the probabil-
ity for consecutive slots for a complete price function, which
allows us to reduce the amortized complexity over n slots
to O(n) using O(n2) memory space. First note that if ei-
ther |BR| = 1 or |BL| = 1, the complexity of calculating the
capacity and overflow of B will be O(n). So knowing the
capacity of right hand side of slot k−1, we calculate the ca-
pacity of right hand side of slot k by just adding slot k−1 to
it, which takes O(n) steps. For the overflow of left bit string,
we can reuse the computation of overflow of left of slot 0:
For slot 0, we calculate overflow of the left bit string itera-
tively starting from slot |B|− 1 to slot 0 adding one bit at a
time and keep intermediate results in memory. Then for any
slot k, the overflow of left side is available in memory. So
the amortized complexity over n slots will be O(n).

Takeaways for designing deadline vs. price functions. We
define the slack offered by a job as the difference between
its chosen deadline and its earliest feasible finish time. For
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Figure 5: Pricing simulation result (Legend numbers are λ and p)

example, under our pricing model, delay sensitive jobs do
not offer slack, whereas the slack offered by a delay tolerant
job arriving at slot 0 to an empty queue and selecting slot j
as its deadline is j. Our simple model for pricing provides
the following two takeaways for designing a price vs. dead-
line function for MRM: 1) The price should be a non-linear
decreasing function of slack; and (2) the pricing function
should be load dependent, i.e., it should take the process-
ing times and deadlines of jobs already in the system (see
the different curves for Timelines 1, 2, and 3 in Figure 4).
Additionally, the price should take into account a job’s pro-
cessing time and the purchasing power of delay tolerant jobs.
The need to account for processing time arises when all jobs
are not of the same duration (unlike the case in our model),
and we discuss the important role of the purchasing power
of delay-tolerant jobs in setting prices next.

Impact of delay-tolerant jobs’ purchasing power. The
maximum amount c that delay-tolerant jobs are willing to
pay denotes their purchasing power comparing to the pur-
chasing power of delay sensitive jobs that pay γ for slot 0.
With c≥ p×γ the purchasing power of delay tolerant jobs is
high enough for them that the system converges to the cases
that allow them to select the slot of their arrival as deadline,
i.e., offer no slack. Hence, c≥ p× γ will result in the rejec-
tion probability equal to λ where λ < 1 is the arrival rate for
delay-tolerant jobs in each slot.

For the case that c ≤ p× γ , we find the upper bound for
the rejection probability using the equality of expected rev-
enue loss of rejection and the expected revenue from delay
tolerant jobs: The delay sensitive jobs come with probabil-
ity p and are rejected with probability Pr. We lose γ for
each rejection, so the expected revenue loss per slot will be
γ× p×Pr. The revenue for each delay tolerant job is at most
c and they arrive with rate λ at each slot; therefore, the ex-
pected revenue from serving delay tolerant jobs is at most
c×λ . Note that c×λ is the upper bound for the expected
revenue as a delay tolerant job may not find a slot with price
exactly c and must select the one with lower price. Based on
the derivation of the price function the expected penalty and
the expected revenue are equal, so γ× p×Pr ≤ c×λ which
leads to eq (12). Using the equation, the operator can pre-
dict the rejection probability based on the wealth distribution
among delay sensitive and delay tolerant jobs. Also a com-
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pany may adjust the wealth distribution among the groups
submitting different types of jobs to maintain the bound on
the rejection probability of delay sensitive jobs.

Pr ≤

{
c×λ

γ×p c < p× γ

λ c≥ p× γ
(12)

Figures 5(a) and 5(b) show the probability of rejecting a
delay sensitive job and the slack (in number of slots) offered
by delay tolerant jobs for different values of c. We generate
these plots using simulations for our simple model of pricing
with γ = 1. Each data point is averaged over 10 runs.7 We
have three simulation parameters, c, λ , and p. In Figure 5(a),
we also show the theoretical upper bound on the rejection
probability under our pricing model using curves labelled
“UP”.

4.2 Pricing MapReduce jobs
Our pricing model as described above made several sim-

plifications: it considers only one server in the system, it as-
sumes all jobs span only one time slot, and a delay sensitive
job can only run in the slot in which it arrives. However, in
practice, a MapReduce cluster typically has multiple servers,
jobs can span multiple time slots, and a small delay may be
tolerable even for delay sensitive jobs (so that delay sensi-
tive jobs do not leave, but instead only accept their earliest
finish time as deadline, i.e., they do not offer any slack). Ex-
tending the model to account for these realities is very com-
plex. Hence, we propose a candidate price function based on
the takeaways from our pricing model, and evaluate MRM’s
performance with them in Section 6.

We introduce the following notation used to define our
pricing function. Let Q represent the set of jobs currently
enqueued for execution at any particular point in time. For
every job i ∈Q, let f e

i denote its earliest feasible finish time.
If the user who submits job i selects di ≥ f e

i as its deadline,
we define the slack offered by this job, δi, as the sum of
free processing time between deadline and earliest feasible
finish time and normalize it by the average estimated jobs
processing time.

We then propose the following pricing function c(δ j, p j)
for a new job j with processing time p j offering slack δ j.

c(δ j, p j) = κ

(
p j

δ j +1
+ ∑

i∈Q

(
pi

δ ′i +1
− pi

δi +1

))
(13)

Here, for every job i ∈ Q, δi and δ ′i are the slack avail-
able in the system until di before and after the new job j is
admitted.

There are three things to note about this pricing function.
First, the first term on the RHS—p j/(δ j +1)—incorporates
our two takeaways from Section 4.1: that price should be
directly proportional to a job’s processing time, but should
be a non-linear decreasing function of slack δ j. Second,
7We do not show error bounds as the ranges are very tight.

the second term puts a price on the change in the amount
of slack available in the system as a result of accepting job
j offering slack δ j into the system. Consider a particular
such job k with processing time pk that was previously ac-
cepted with slack δk. As a result of the new job j jumping
ahead of k, the available slack until dk may decrease, e.g.,
if dk > d j. Hence, we charge job j an additional amount(

pk/(δ
′
k +1)− pk/(δk +1)

)
for decreasing the slack relative

to k’s deadline by jumping ahead of it. Note that if j selects a
deadline that is after the deadline all the jobs currently wait-
ing in the queue then the second term on RHS of (13) is zero.
Lastly, the κ parameter lets us control pricing relative to the
purchasing power of users with access to the system. If κ

is set to 1, then a job with one unit of processing time that
offers zero slack is charged $1.

We considered other forms of price vs. deadline curves –
e.g. pricing decaying exponentially based on the ratio δ j/p j
or a quadratic decay as a function of δ 2

j /p j. These functions
are biased in favor of small jobs: they force large jobs to
offer more slack, compared to small jobs, if they want to pay
a certain price. They are suited for a scenario where small
jobs are less delay tolerant compared to large jobs.
Other choices for pricing function. We consider and eval-
uate three different strategies: a) fixed premium with expo-
nential price decay (eq. (14)), b) fixed premium with quadratic
price decay (eq. (15)), and c) load-aware pricing (eq. (16)).
In Eq. (16), ρ is the system load and γ 8 is the average job
processing time across all jobs. In all three cases, we lower
bound the price of a job j by r j.

c j = κr j exp
(
−δ j

p j

)
, κ ≥ 1 (14)

c j = κr j−
δ 2

j

p j
, κ ≥ 1 (15)

c j = r j exp
(

ρ p j

γ

)
(16)

Calculating system load, ρ . To compute system load ρ , we
need to take job deadlines into account, in addition to their
processing times. To illustrate this, consider the example in
Figure 7(a), jobs A and B require 10 and 20 seconds of exe-
cution time over 16 map slots, and their deadlines are t = 70
and t = 110. We can interpret this as the cluster having a load
of 1/7 until t = 70, and load of 2/3 for t ∈ (70,100]. How-
ever, as shown in Figure 7(b), if job C’s deadline is t = 110,
then the system load increases to 1 for t ∈ [0,110]. Hence,
users’ deadline choices determine periods of heavy/light sys-
tem load.

Based on this discussion, we define ρ as follows. Sup-
pose at time t = 0, there are n jobs with processing times
p1, . . . , pn and deadlines d1 ≤ . . . ≤ dn in the system. Con-
sider a new job A with processing time pA, for which the

8We can compute γ using moving averages and/or from historical
job statistics collected in system logs.
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user wants to select deadline dA. The total remaining slack
in the system after A has been scheduled is given by β = dA−
∑k:dk≤dA

pk. We define job A’s contribution to the total slack
as β/pA, and set ρ = max(0,1−β/pA) in Eq. (16). Note that if
dA = fA (earliest finish time for A), then ρ = 1. Though sev-
eral other definitions of ρ are possible, as we show later in
this section, we find that our definition performs well.

Through our early evaluation, we found that the load-aware
(e.q. 16) worked better than the other two which validates
our second take-away in Section 4.1. However, the load def-
inition of this function only considers the jobs until the dead-
line and not after it although we saw they are also important
(Section 4.1). It also defines the load based on the duration
of the new job which is not the focus of this paper. As a
result, we concluded with our price function in e.q. 13.

5. ACHIEVING PREDICTABILITY AND SER-
VICE DIFFERENTIATION

MRM uses the slack provided by delay-tolerant jobs to
provide differentiated service to any delay-sensitive job, by
allowing it to jump ahead of jobs waiting in the queue at
the time of its arrival. However, MRM needs to ensure pre-
dictability while doing this, and three challenges arise in this
context. First, MRM needs to compute the conditional so-
journ time for the new arrival in the presence of jobs that
offer slack. Second, MRM needs to compute a set of feasi-
ble deadlines for the new arrival, so that the user can select
prices (and the associated deadlines) for the new arrival. Fi-
nally, MRM needs to schedule these jobs in order to ensure
the selected deadlines are met. We address each of these
challenges below.

Using prediction-intervals to compute conditional sojourn
time. Whenever MRM allows a job j to jump ahead of jobs
waiting in the queue, it must ensure that doing so does not
violate the deadline of jobs that j jumps ahead of. Ensur-
ing this requires re-computing the conditional sojourn time
distribution for all the jobs that j jumps ahead of. To avoid
the computation of multiple sojourn time distributions on a
new arrival, MRM estimates a prediction-interval (PI) upper
bound for a job’s processing time. The PI upper bound for a
job depends on MRM’s estimate of its processing time and
the standard deviation of estimation error. For example, the
95% PI upper bound for job j is equal to µ j + 1.64× σ j,
where µ j is the estimate for j’s processing time and σ j is the
standard deviation of the estimation error. MRM can then
use the sum of these upper bounds and the upper bound for
the new job as its conditional sojourn time.

Now, we can easily use the upper bounds instead of job
durations in the scheduler to use the available slack to ex-
pedite a delay-sensitive job and still maintain the deadline
violation bound. This approach is simple to implement but
more conservative. When the processing time estimation er-
ror follows a Gaussian distribution, a PI-based approach will
lead to fewer deadline violations than a JD-based approach
at the expense of larger earliness. This is because a PI-based

Figure 7: Example of MRM’s estimation of earliest finish time for a
new job.

approach always selects later deadlines compared to the joint
distribution:

∑
j

µ j +ασ j ≥∑
j

µ j +α

√
∑

j
σ2

j (17)

Figures 6(a) and 6(b) illustrate this tradeoff where the job
processing times follow Gaussian distribution with mean 1
and mentioned standard deviation. Here, we simply use the
mean value as the predicted duration.

In real-world, the distribution of the estimation error can
deviate from Gaussian, and we examine its effect here. Fig-
ures 6(c) and 6(d) compare violation rate and the earliness
(normalized by average job duration) on two settings “Ran-
dom” and “Trace” for a server with one map and one reduce
slot. For the Random case, we use the predicted durations
to set deadlines but run based on generated Gaussian ran-
dom durations with their mean and variance based on the
estimated duration and its error standard deviation. For the
Trace case, we run based on real durations. Note that the
violation rate goes beyond the expected bound for Joint Dis-
tribution method even for the Random case. The reason is
when the standard deviation is large for small jobs, the error
distribution is not truly Gaussian but Rectified Gaussian 9 as
the duration of jobs cannot be negative. Regardless of that,
the metrics for both methods on the traces follow the same
trend as the random generated numbers which indicates that
the prediction error distribution has the same effect as Rec-
tified Gaussian error.
Finding feasible deadlines. How does MRM determine the
range of feasible deadlines for a new job, taking into account
the deadlines committed to jobs already admitted into the
system? First note that, if a deadline is feasible for a job, any
deadline later than that is also feasible; hence, we only need
to find the earliest feasible deadline. Given the deadlines of
currently enqueued jobs, MRM greedily attempts to fill any
available slack in the schedule to determine the new job’s
earliest feasible deadline. We illustrate this with a simple
example.

Figure 7 shows an example job trace on a single server.
Assume that the system is work-conserving and pre-emptive.
When job C with PI upper bound of 80 seconds arrives at t =
0, there are two jobs A and B in the system. As per their PI
upper bound duration, jobs A and B need 16 and 32 seconds
to finish, respectively. Suppose the deadlines for A and B
are dA = 70 and dB = 110. Then, for A and B to meet their

9 Gaussian distribution when negative elements are reset to 0

9



0 0.5 1
0

0.02

0.04

0.06

ρ

V
io

la
tio

n 
R

at
e

 

 

JD,σ=0.1
JD,σ=0.4
PI,σ=0.1
PI,σ=0.4

(a) µ = 1

0 0.5 1
0

2

4

6

ρ

E
ar

lin
es

s

 

 
JD,σ=0.1
JD,σ=0.4
PI,σ=0.1
PI,σ=0.4

(b) µ = 1

0 0.5 1
0

0.05

0.1

ρ

V
io

la
tio

n 
R

at
e

 

 JD,Trace
JD,Random
PI,Trace
PI,Random

(c) Estimated duration from
traces

0 0.5 1
0

2

4

6

ρE
ar

lin
es

s(
A

vg
 jo

b 
du

ra
tio

n)

 

 

JD,Trace
JD,Random
PI,Trace
PI,Random

(d) Estimated duration from
traces

Figure 6: Comparing the violation rate and the earliness for an M/G/1 queue with estimated job duration for β = 5%

deadlines, they must start by t = 10 and t = 30, respectively.
A “lazy” schedule where MRM schedules a job as late as
possible is shown in Figure 7(a). This schedule leaves a lot
of slack in the system; the server is free during the intervals
t ∈ [0,60], t ∈ [70,90], and t ≥ 110. To finish C as soon
as possible, we can fill some of this slack. Then, as shown
in Figure 7(b), we can schedule 60 seconds of it during the
interval [0,60] and the remaining 20 during [70,90]. Hence,
the earliest finish time for C is t = 90s. However, if C took
100 seconds to finish, then the earliest finish time for C will
be t = 130s (Figure 7(c)). Figure 7 illustrates the key step
in computing the earliest possible finish time—identify the
location in time of slack in the system and then fill this slack
with the new job (to the extent possible).

In general, for a cluster with multiple machines, com-
puting the earliest feasible finish time for a new (n+ 1)th

job, with processing time (or PI upper bound) pn+1, when
MRM has already accepted n jobs with processing times
p1, . . . , pn and deadlines d1, . . . ,dn is NP-hard. For the case
of two machines where all jobs have the same deadline d1 =
d2 = . . . = dn = d0 and jobs cannot be “partitioned” (e.g.,
all jobs have 1 Map and 1 Reduce task), we can obtain a
reduction from the PARTITION problem that is known to
be NP-hard [19]. In our current implementation of MRM,
we use a greedy heuristic to estimate earliest feasible finish
times. Our MRM instantiation takes both Map and Reduce
slots into account. MRM’s computation of the earliest feasi-
ble finish time assumes that jobs contend only for Map slots
and Reduce slots. However, since we estimate task durations
using prior job execution statistics (see Section 3.2), network
contention does determine when Map and Reduce slots are
available. Thus, MRM accounts for runtime resource con-
tention indirectly.
Deadline-aware scheduler. Once MRM commits to a par-
ticular deadline for a job, it is the scheduler’s responsibility
to make sure that job finishes before its deadline. Clearly,
an FCFS (the Hadoop default) or a Fair scheduler [34] can-
not always achieve this. However, an earliest deadline first
(EDF) scheduler will suffice. Since users can only select
a deadline from feasible finish times, there always exists a
schedule S that satisfies all deadlines; if S does not sched-
ule jobs in the order of increasing deadlines, then a simple
pairwise re-ordering can be used to obtain an EDF schedule
from S without violating any of the deadlines [18]. Note

that, as we are using the upper-bound prediction interval as
the duration of jobs, this rearrangement still keeps the vi-
olation rate under the target bound even for estimated job
processing times. We have implemented an EDF scheduler
in Hadoop.

There is a close relationship between our design choice to
not allow users to specify arbitrary deadlines for their jobs
and the simplicity of MRM’s scheduler. An EDF scheduler
suffices for MRM only because it allows users to choose a
deadline from a restricted set of feasible deadlines. An alter-
native design can be to accept arbitrary deadlines and, if all
of them cannot be met, to schedule jobs in such a way that
average or maximum tardiness is minimized. However, in
this scenario, predictability is sacrificed.

Note that MRM’s design does offer the possibility that
a user may not like any of the deadline choices MRM of-
fers (or the price it charges), and she may decide to submit
her job elsewhere. However, the pricing function in Eq.(13)
assumes that delay-sensitive jobs do not go away. Instead,
when the earliest offered deadline is later than their desired
one, they accept earliest offered deadline. We also assume
that users have enough money or tokens to afford the price
for some deadline. As shown in Figure 4 the price eventu-
ally drops to zero, and hence, if a user does not have enough
tokens, she can still submit her job but will have to accept
a later deadline. These assumptions hold in monopolistic
scenarios where there is a single cloud provider, e.g. the
high performance computing clusters at universities or pri-
vate clouds at enterprises. In fact, the university computing
cluster that we used for our experiments provides an environ-
ment that satisfies all these assumptions. We plan, as part of
future work, to explore the design of a pricing mechanisms
for multiple (public) cluster providers.

6. EVALUATION
We evaluate MRM from three perspectives: the accuracy

of its job processing time estimates, the predictability that it
offers in job finish times, and the service differentiation that
it enables for delay-sensitive jobs.

6.1 Evaluation of processing time estimation
Experimental methodology. To understand the performance
of various estimation methods, we ran experiments on a Hadoop
cluster provisioned across 40 servers; these 40 servers were
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Bin % Jobs # Maps # Reduces
1 38 1 0
2 16 [2-6] 0
3 14 [7-30] 0
4 8 [31-60] 6
5 6 [61-120] 12
6 6 [121-180] 15
7 4 [181-240] 18
8 4 [241-360] 24
9 4 [361-480] 30

Table 1: Workload

part of a larger shared compute cluster. Each server had 4
cores, and was configured with 2 Map and 2 Reduce slots
(the default Hadoop configuration). The servers had 12 GB
memory, 30–60 GB storage, and 1 Gbps maximum inter-
server bandwidth. Our experiments shared the network with
jobs submitted by other users to the shared compute clus-
ter, and we had no control over the 40 servers allocated to
us. Hence, the network topology changed across our experi-
ments. This scenario matches the resource acquisition model
prevalent in today’s cloud services (e.g., Amazon AWS [2],
Google [27]), in which users are more likely to setup MapRe-
duce clusters on-demand (and hence get different sets of
servers to work with at different times).

We use four types of MapReduce jobs in our experiments—
grep (search for a pattern), sort, wordcount (wc), and pi-
estimator (PiE). For grep and sort jobs, we generate input
workloads using the loadgen class that comes with the Hadoop
distribution. The loadgen class takes two parameters, keepmap
and keepreduce, that control the percentage of records re-
tained at the end of the Map and the Reduce phases. These
two parameters help us control the map and reduce reduction
factors for these jobs. Grep jobs have keepmap=0.1%, and
keepreduce=100%, and hence, have huge reduction in data
size at the end of the Map phase. Sort jobs have keepmap
= keepreduce = 100%. Wordcount jobs compute the fre-
quency of words in a document. The input data size for
these jobs is proportional to the number of Map tasks be-
cause each Map task processes 64 MB of randomly gen-
erated text data. A pi-estimator job uses the Monte Carlo
method to estimate the value of π . Compute-intensive PiE
jobs differ from each other in the number of map tasks, and
the number of Monte Carlo simulation steps. These four job
types, consistent with the previously published evaluations
on MapReduce (or Hadoop) clusters [16, 6], vary in terms
of the balance between CPU and I/O in their execution.

Using previously published workload statistics for shared
MapReduce clusters [34], we created a benchmark workload
with jobs’ sizes (number of Map and Reduce tasks) sampled
from 9 different bins. Table 1 shows the distribution of jobs
across bins, and the number of Map and Reduce tasks for
jobs in each bin. For jobs belonging to bins 2-9, the number
of Map tasks is not fixed (unlike bin 1); instead, we sam-
ple it uniformly from a range. This particular workload mix
reflects a scenario where users submit lots of small experi-
mental jobs, but also submit some large production jobs (as

Method Map Reduce
OLS 0.99 0.96

Ridge 0.99 0.97
CCA 0.99 0.97

Kridge 0.99 0.94
KCCA 0.99 0.98

GP 0.99 0.98
Bin 0.92 0.87

Table 2: R2 metric

is the case at Facebook and Yahoo [34, 5]). The jobs in bins
7–9 contain many more Map tasks than the available Map
slots; the over-subscription factor for the largest jobs is 6.

We ran 10 experiments, with each run consisting of 100
jobs with the inter-arrival time between jobs sampled from
a Poisson distribution. These 10 runs were split into three
different load scenarios – low, medium, and high loads. The
average job inter-arrival times were 100 and 200 seconds in
the low load cases, 50 seconds under medium load, and 16
and 32 seconds under high load. The sizes of the 100 jobs in
each run were as per Table 1, and we had (roughly) 25 jobs
of each of the four job types. We divided the data from our
10 runs into training and test sets with each set containing
five runs at different loads
Processing time estimation accuracy. We use the Coeffi-
cient of determination (R2) to capture the goodness of fit of
various techniques including out GP model; R2 corresponds
to the proportion of data variability that is explained by the
model [25]. An R2 value close to 1 denotes a good fit. Ta-
ble 2 shows the R2 metric for different methods. We com-
bined the estimate for the Shuffle and Reduce phase into
a single estimate (labelled “Reduce”) for simplicity. The
method labeled “Bin” represents the approach by Verma et
al. [29] in which they assume that the same job is executed
several times, and use the mean and variance of process-
ing time from multiple runs to estimate a job’s processing
time. This assumption does not hold for our workload (we
have similar not exactly the same job) and hence, the “Bin”
method has lower R2 value. While the other methods pro-
vide a good fit (R2 values close to 1) for both Map and Re-
duce phase durations, we get slightly higher accuracy for
Maps than Reduces. These results are similar to previously
reported results for regression and CCA based methods [13,
12], and demonstrate that several techniques can be used for
estimating MapReduce job processing times.

This result demonstrates that our approach of using prior
statistics of job executions can provide reasonably accurate
processing time estimates. It may be possible to further im-
prove upon these results by matching the training data to
the current system conditions can improve accuracy, but this
may require detecting when the operating load has changed
significantly and updating the analytical models. Hence,
there exists a accuracy vs. complexity trade-off with regards
to the processing time estimation.
PI estimation accuracy. In addition to estimating process-
ing times, the predictability that MRM can offer also cru-
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Run OLS GP Bin
Map Reduce Map Reduce Map Reduce

16 1 0 1 1 2 2
32 7 0 7 1 5 3
50 9 4 7 4 3 2

100 2 0 2 0 2 4
200 1 1 0 0 1 0
All 4 1 3.4 1.2 2.6 2.2

PI length (s) 222 107 112 44 530 53

Table 3: PI error and average PI length

cially depends on its ability to estimate an accurate and tight
prediction interval. To understand the impact of using PI on
predictability, we can compute whether the actual execution
time of the map and reduce phase of a jobs falls within its
PI. If it does not, then we have under-estimated the execution
time and this can lead to a deadline violation. Table 3 shows
the PI error percentage (i.e. percentage of jobs whose exe-
cution time does not fall inside the PI), with 95% PI, for the
five test runs. Across individual runs (with 100 jobs each),
we see less than 9% and 5% PI error in the worst case for
Map and Reduce phase durations. The PI error numbers for
maps are higher than expected in two cases; with 95% PI,
we would expect close to 5% violations. However, when ag-
gregated across the 500 jobs in the test data, the PI error rate
is close to 1% for Reduce phase duration, and 4% for Map
phase duration. Table 3 also shows the PI error for the “Bin”
method [29]. Even though the R2 accuracy for this method
was not good (see Table 2), the average PI error is within the
5% bound.

Table 3 also shows the average PI length for the Map and
Reduce phase duration. Comparing the PI length with the
measured job execution times, we found that GP bounds are
much tighter, especially for shorter jobs, compared to OLS
bounds. The average PI length from GP is 3.5 (0.8) times
the total Map (Reduce) duration; the corresponding value for
OLS is 13.8 (2.4). Note that the PI length of the map phase
for the “Bin” method is much larger than in case of the GP
or the OLS method; thus, the “Bin” method achieves a lower
PI error rate at the expense of a larger PI length. For the
reduce phase, the PI length for the “Bin” method is half of
the PI length for the OLS method but slightly larger than the
GP method. However, it’s PI error rate for the reduce phase
is the highest; we suspect that this is again due to the fact
that our workload has similar but not exactly the same jobs.
Based on the results shown in Tables 2 and 3, we conclude
that our GP method is better suited than the “Bin” method
for real-world scenarios where the same job is not executed
repeatedly.

6.2 Deadline Predictability
Next, we evaluate MRM’s ability to meet job deadlines.

We use the same methodology as described above to execute
runs of 100 jobs. We selected three load scenarios—low,
medium, and heavy—with average job inter-arrival times of
100, 50 and 32 seconds in the three cases. We conducted six

Load % Tardy Median tardiness (s) Median earliness (s)
H 18 22.9 135.3
M 1 266.4 105.6
L 1 20.1 104.8

Table 4: Deadline violation rate under no-slack. H: Heavy, M:
Medium, L: Low.

experiment runs, two for each load scenario. When testing
for a particular run of 100 jobs, we use the trace from other
five runs as training data.

The most adversarial scenario for MRM to achieve pre-
dictability is when no job offers any slack. We refer to this
setting as no-slack. As discussed in Section 5, we use our PI
based approach to ensure that deadline violations are under
a threshold β . For our experiments, we use two-sided 95%
PI, and hence, MRM is configured to keep the violation rate
below 2.5%.

Table 4 shows that MRM achieves violation rate below
the 2.5% threshold for the medium and low load scenarios.
However, for heavy load, the violation rate is 18%. For jobs
that finished before their deadline, we show the median ear-
liness value in seconds.

To analyze the cause for the high rate of deadline viola-
tions in the high load scenario, Figure 8 plots the difference
between the estimated and the actual total execution time for
the map and reduce phases for the 18 jobs that missed their
deadline in the heavy load run. This figure points to MRM
under-estimating processing times as the main reason for a
higher deadline violation rate. Instead of under-estimating
the processing time of at most 2.5% of jobs (because we use
two-sided 95% PI), during the heavy load run, MRM under-
estimated the processing time of either the map phase or the
reduce phase or both for 18% of the jobs.

We find that the main reason for MRM’s under-estimation
of processing times for 18 jobs in the heavy load case is the
high re-execution rate of map and reduce tasks. For the low
and medium load runs, a total of 410 and 377 map tasks are
re-executed across 100 jobs, receptively; hence, average fail-
ure rate is 4.1 and 3.77 per job. For the heavy load case, 808
map tasks are re-executed. Thus, failure rate for map tasks is
twice as high. The situation is worse for reduce tasks: a total
of 4, 5, and 22 reduce tasks are re-executed across the 100
jobs when under low, medium, and heavy load, respectively.
We had Hadoop’s straggler mitigation algorithm turned on
during our experiments, and we speculate that the high task
re-launch rate for the heavy load case was due to stragglers.

12



5 10 15

−50

0

50

100

Tardy job ID

E
st

im
at

ed
 −

 A
ct

ua
l (

s)

 

 

Map
Reduce

Figure 8: Error in processing time estimates: no-slack, heavy load

One solution for MRM to improve predictability under
high task re-launch rate, and more generally when the pro-
cessing time estimate is incorrect, can be to track the ac-
tual processing time of tasks of a job as they finish [21, 20].
For large jobs with lots of tasks, MRM can then detect if a
job’s progress is slower than expected (e.g., due to a high
rate of task re-launches or incorrect processing time esti-
mate). MRM can leverage this information in two ways: (1)
it can compute the expected finish time of this job and in-
form the user about the additional delay beyond the deadline
in completing the job, and (2) it can take the new estimate for
the processing time for this job when computing the feasible
deadlines for new arrivals. The latter is important to prevent
cascading violations, i.e., a delayed job causing deadline vi-
olations for jobs waiting for it to finish. Note that cascading
violations did not occur in our heavy load experiment. We
plan to pursue this enhancement as part of our future work.

6.3 Service Differentiation
We evaluated a scenario where we force a set of randomly

selected jobs to give slack, and verified that this helps other
jobs (as deadline sensitive jobs) get earlier deadlines. This
means that the slack by delay tolerant jobs can improve the
service for delay sensitive jobs in Map-Reduce. However, to
study the impact of the pricing function on MRM’s service
differentiation, we use trace-driven simulations. We use sim-
ulations here since our experimental setup is currently im-
plemented to only take a trace of job arrival times as input.
We have not yet implemented the framework in which we
dynamically select the deadline for a job based on the price
vs. deadline function at that point in time.
Simulation methodology. We extract processing time statis-
tics from an experiment run with moderate load on a 40 node
cluster. We then simulate errors in processing time estimates
by adding Gaussian noise (with standard deviation σ = 4.8
seconds) to the actual processing times extracted from our
traces. The error standard deviation is equal to 10% of the
average job duration in our traces. We add a negative error
value to the processing time estimate of (roughly) 95% of the
jobs, and a positive error value for the rest. This is equiva-
lent to using the 95% PI upper limit of processing time for
computing deadlines in our experiments (see Sections 5 and
6). Although the run had only 100 jobs, we run the simula-
tion for 500,000 jobs by entering the jobs again in a random
order 5000 times. The arrival process is Poisson with 50s,

α = 2 α = 1.5 α = 1.1
H M L H M L H M L

1.3 2.2 2.5 0.01 0.01 0.01 0 0 0

Table 5: % Tardy jobs; H: 50 s, M: 100 s, L: 200 s

Load α = 2 α = 1.5 α = 1.1
median 95th median 95th median 95th

H 0 37.9 14.7 50.2 35.9 65.9
M 0 9.6 14.7 24.6 35.9 40
L 0 0 14.7 14.7 35.9 35.9

Table 6: Slack by delay-sensitive jobs (in seconds)

100s and 200s inter-arrival for low, medium and high load
cases, respectively.

We choose half of the jobs as delay-sensitive jobs, with the
other half considered delay-tolerant. For any delay-sensitive
job, we assume that users desire the earliest possible dead-
line, but they are willing to pay at most α times their pro-
cessing time p j (assuming 1 token buys 1 unit of processing
time). We show results for three different values of α—2,
1.5, and 1.1. The different values of α capture various sce-
narios for the purchasing power of users. For delay-tolerant
jobs, we model users as wanting to pay only p j, the mini-
mum possible price under MRM. We set κ = 2, which means
that delay-tolerant jobs offer a slack at least equal to the aver-
age job duration even in an empty queue. On the other hand,
when α = κ , we expect delay-sensitive users to provide zero
slack when the queue is empty.
Results. Table 5 shows the percentage of tardy jobs for dif-
ferent values of α . With larger α , where delay-sensitive jobs
choose smaller slacks, the violation rate is higher. However,
the interesting point to note is that the scenario with higher
load has fewer violations. This is because load-aware pric-
ing increases the slack in the system by adjusting the pricing
function to the system load. Hence, the price increases for
higher loads, because of which jobs are forced to provide
larger slacks; the numbers in Tables 6 and 7 confirm this.
Higher slack makes MRM more robust to processing time
estimation errors, and this leads to fewer deadline violations.

Tables 6 and 7 show the slack offered by delay-sensitive
and delay-tolerant jobs for different values of α . As we
would expect, we see that delay-sensitive jobs offer lower
slack than delay-tolerant jobs both in the median and 95th

percentile values. This is true even when α = 1.1, the sce-
nario in which delay-sensitive jobs offer higher slack due
to lower purchasing power. Thus, MRM’s pricing function
discourages delay-tolerant jobs from offering lower slack,
relative to the slack offered by delay-sensitive jobs. The sec-
ond term on the RHS of (13) contributes to a higher price
(that delay-tolerant jobs cannot afford) and hence, prevents
them from offering lower slack (and jumping ahead of jobs
waiting in the queue).

Another metric of interest is how much jobs are over charged
because MRM over-estimated their processing time. Table 8
presents the ratio of the amount that a job paid over its real
resource usage. These numbers are the same for all load val-
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Load α = 2 α = 1.5 α = 1.1
median 95th median 95th median 95th

H 43.9 56.1 43.9 60.6 43.9 68.4
M 43.87 43.9 43.87 44.03 43.87 43.9
L 43.87 43.9 43.87 43.9 43.87 43.9

Table 7: Slack by delay-tolerant jobs (in seconds)

Type α = 2 α = 1.5 α = 1.1
median 95th median 95th median 95th

DS 2.4 2.98 1.8 2.23 1.31 1.64
DT 1.2 1.49 1.2 1.49 1.2 1.49

Table 8: Premium paid over resource usage; DS: Delay-sensitive, DT:
Delay-tolerant

ues; we omit the mean statistics because they are just 2%
above the medians. For α = 2, we expect delay-sensitive
jobs to pay twice their resource usage but they actually paid
about 2.4 times. One way to address this issue is to reim-
burse the extra amount charged.

Comparison against other schedulers. Using simulations,
we compare MRM against FCFS and a non pre-emptive pri-
ority scheduler that prioritizes delay-sensitive jobs over delay-
tolerant jobs. As discussed in Section 3, FCFS can pro-
vide predictability but no service differentiation. The pri-
ority scheduler provides the best possible service differenti-
ation without pre-emption, but it achieves this at the expense
of predictability for delay-tolerant jobs.

Figure 9(a) shows the average waiting time for delay-sensitive
jobs under different schedulers for five different average job
inter-arrival times when α = 2 and κ = 2. (Later we com-
pare for different values of α and κ .) The bars represent
the 5th and 95th percentiles for the waiting time. Under
heavy load, average job inter-arrival times of 40, 44, and
50 seconds, delay-sensitive jobs experience queueing delays
under FCFS, whereas MRM leverages the slack offered by
delay-tolerant jobs to provide differentiated service to delay-
sensitive jobs. As expected, the priority scheduler achieves
the shortest waiting time, but as shown in Figure 9(b), its
deadline violation rate is unacceptable.

The reason for reduction in the waiting time for delay-
sensitive jobs under MRM or priority scheduler is that they
can jump ahead of (delay-tolerant) jobs waiting in the queue.
We did a pairwise comparison between MRM and FCFS
in terms of the number of delay-sensitive jobs that jump
ahead of some job(s). For example, when average job inter-
arrival time is 40s, by comparing the completion order of
jobs under FCFS and MRM, we observed that 35.4% of
the delay-sensitive jobs jumped ahead of some job(s) under
MRM. However, it is possible for a delay-sensitive job to
jump ahead of some other job(s), only if there is at least
one delay-tolerant job waiting in the queue when the delay-
sensitive job arrives. When restricted to delay-sensitive jobs
that saw at least one delay-tolerant job in the queue upon ar-
rival, we find that 47.7% of delay-sensitive jobs jump ahead
of earlier jobs when compared with the FCFS schedule.
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Figure 10: Changing the purchasing powers (legend numbers are α

and κ)

Achieving this predictability and service differentiation is
not free, but it affects the earliness of the jobs. Figure 9(c),
shows that MRM has larger earliness than other policies.
The earliness for FCFS policy increases by load because the
prediction interval method is conservative (as discussed in
Section 5). The difference between MRM and FCFS de-
creases for smaller inter-arrival times (higher load) as for
higher loads the slack provided by deadline tolerant jobs are
filled by deadline sensitive jobs and they cannot run early.
The earliness for Priority queue does not increase for higher
loads as much as FCFS does because deadline sensitive jobs
in Priority queue see smaller queue as they only see deadline
sensitive jobs ahead of them.

Changing the purchasing powers. We compared the wait-
ing time of delay-sensitive jobs and earliness of MRM in
Figure 10(a) for different values of α and κ . 10 Each line rep-
resents an experiment with different job inter-arrival times
and larger waiting times are for smaller inter-arrival times.
The diagram shows that there is a trade off between wait-
ing time for delay-sensitive jobs and earliness of jobs in
the system. This trade-off can be adjusted by parameters
α and κ that affect the purchasing power of delay-sensitive
vs delay-tolerant jobs. Note that for κ = 2, the lines for
α = 5 and α = 2 overlap with each other. This is because
delay-sensitive jobs already provide no slack for α = 2 and
increasing α to 5 does not help, instead we should increase
prices by larger κ to force delay-tolerant jobs provide more
slack.

Now we explain the curves in Figure 10(a) by justify-
ing the trend of earliness vs. load (waiting time). Earli-
ness mostly comes from the fact that delay-tolerant jobs give
slack and there is no delay-sensitive job to fill the slack. We
believe that there are two opposing load-dependent forces af-
fecting earliness: 1) As the price function is load-dependent,
the price increases as load goes up. So fewer delay-sensitive
jobs afford to jump ahead of others, which causes larger ear-
liness for higher loads (waiting time) 2) In low load, there are
scenarios that even if a delay-tolerant job gives large slack,
no delay-sensitive job arrives to fill its slack, so it finishes
early. So we expect smaller earliness for higher loads. We
see that the first case is dominant in all curves except for

10 Here, we fixed the purchase power of delay-tolerant jobs to 0.5.
Someone may also fix κ or α instead.
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Figure 9: Comparing the violation rate and the earliness for an M/G/1 queue with estimated job duration for β = 5%

α = 5,κ = 4. This is because for other cases, either κ is too
small that does not force delay-tolerant jobs give large slack
or α is too small for delay-sensitive jobs to be able to fill the
slack. However, for α = 5,κ = 4, the second force is domi-
nant because delay-tolerant jobs give such large slack that is
only filled in high load. Also α is large enough that the rise
of price function does not affect this trend.

Figure 10(b) compares the violation rate for different val-
ues of α and κ . Note that when the purchasing power of
delay-sensitive jobs is low comparing to κ , the violation rate
is almost zero as they provide enough slack to compensate
the job duration under-estimation.

7. RELATED WORK
Our work in developing MRM is related to prior work in

several areas.
Computing processing time estimates. Ganapathi et al. [12]
use a kernel CCA-based method to estimate a job’s pro-
cessing time. Our results in Section 3.2 extend their results
by evaluating a larger set of approaches on a much larger
dataset. Like MRM, Kavulya et al. [17] also use Hadoop-
specific features to characterize jobs. To estimate the pro-
cessing time of job A, they first do a N-nearest neighbor
search in the feature space for jobs similar to A executed
in the past, and then use locally-weighted linear regression
to estimate A’s processing time. However, unlike MRM,
their goal is to detect performance problems on the cluster
by comparing estimates of job processing times with actual
runtimes. As such, it is crucial for their work to have fairly
precise processing time estimates; MRM’s estimation tech-
nique is more conservative because it attempts to bound the
worst case behavior in order to avoid deadline violations.

Verma et al. [29] consider a scenario where the same job
is executed several times, and use the mean and variance of
processing time from multiple runs to estimate a job’s pro-
cessing time. As shown in Section 6.1, this strategy does not
work well for previously unseen jobs. Also, in a multi-tenant
environment, we observed higher variance in job processing
times than reported in [29]. We believe this is because in
[29] jobs are executed one at a time so there is no inter-job
resource contention, and our workload is more diverse.

Similar to our approach of using prediction intervals to
set deadlines, Mu’alem and Feitelson use a conservative ap-
proach for scheduling jobs on an IBM SP2 system. How-

ever, instead of estimating service times, they ask users to
provide an estimate, and then recommend using twice that
value for making scheduling decisions [22]. Our prediction
interval based approach is a more principled way for setting
conservative deadlines.

Several other approaches have been proposed for estimat-
ing the (remaining) processing time of a task/job once it
starts executing [6, 21, 20]. These are not directly applicable
to MRM because it needs a priori estimates.
MapReduce schedulers. Scheduling MapReduce-style work-
flows has received significant attention. Jockey [11] is clos-
est in spirit to MRM. It provides latency guarantees and dy-
namic resource allocation to maximize jobs’ utility. Jockey’s
latency guarantees achieve predictability but only for pro-
duction jobs that execute repeatedly. This is because Jockey
uses statistics from past runs to estimate a job’s processing
time. In contrast, MRM can estimate the processing time
of a job that has not executed previously provided similar
jobs have been executed in the past. Another key difference
between Jockey and MRM is that Jockey takes the function
describing the utility of a job completing at time t as input
and does dynamic resource allocation to maximize this util-
ity while in MRM, the system offers a price vs. deadline
curve to user. The deadline picked by a user in MRM can
be interpreted as time t at which user’s utility function inter-
sects MRM’s price vs. deadline curve.

Quincy [16] uses a network flow formulation to achieve
two goals—optimize the data locality of jobs and enable
fair access to the cluster irrespective of job size. Zaharia
et al. [34] implement delay scheduling to improve the data
locality of short jobs. In both cases, the improvement in data
locality and fairness that any particular job receives depend
on other jobs simultaneously seeking access to the cluster
and so cannot be used to offer predictability guarantees.

Verma et al. [30] evaluate three variations of the earliest
deadline first (EDF) scheduler in Hadoop—1) vanilla EDF,
2) EDF with minimum allocation of Map and Reduce slots
to a job to meet its deadline, and 3) EDF with dynamic re-
allocation of spare Map/Reduce slots. They make the same
assumption as [29]—a job is executed multiple times over
new datasets—to estimate job processing times, and every
job selects a deadline uniformly at random from [2p j,4p j],
where p j is the job’s processing time estimate. However,
since users’ choice of deadline is not restricted to a feasible
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set, all three schedulers incur a large number of deadline vi-
olations. Verma et al. [30] observed 20–40% deadline viola-
tions with high levels of tardiness, when running the cluster
at a load comparable to the low load scenario we considered
in Section 6. In contrast, our results validate MRM’s design
philosophy that to achieve predictability we need to restrict
deadline choices to a feasible set.
Market-based mechanisms. There is a rich history in ap-
plying market-based approaches for resource management,
in particular for cluster computing environments [31, 26, 7,
27]. The key idea in these approaches is to create a market
that can bring sellers (owners of computational resources)
and buyers (users with jobs to execute) together. Often,
prices for resources are set using either repeated auctions
or trading [31, 27, 7]. These auction-based systems are best
suited for federated clusters with multiple independent own-
ers for resources.

Pricing in MRM is designed for clusters owned by a single
entity. In such a setting, the overhead of repeated auctions
can be avoided by having a centralized entity set prices [26].
Here, users are assumed to be price takers, and the main
challenge lies in setting resource prices to achieve desired
objectives—predictability and service differentiation in case
of MRM.
Congestion pricing. MRM’s price-deadline curve is simi-
lar in spirit to prior work on pricing to alleviate congestion
in other resources such as network bandwidth [24], free-
ways [32], and parking spots [14]. Flat rather than per-
byte pricing has emerged the dominant pricing strategy for
network access, as the former has been seen to encourage
greater network access. However, flat pricing is unsuitable
for shared multi-tasking clusters due to its inability to dif-
ferentiate jobs based on their delay tolerance. Similar to
MRM’s load-sensitive pricing, there have been recent pro-
posals to price parking based on current congestion levels [4].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new service model for shared

MapReduce clusters that provides both predictability of fin-
ish times and service differentiation. Our design, MRM,
forces users to reveal their true finish-time preferences us-
ing a novel price-deadline curve formulation, incentivizing
them to offer slack that enables the system to accommodate
users with delay-sensitive jobs. Our experiments show that,
despite significant performance variability in clusters, it is
possible to achieve near-perfect predictability of finish times
when users can be incentivized to offer slack.

MRM’s design opens up many interesting directions for
future work. First, for jobs with multiple MapReduce phases
(e.g., Hive [3] and Pig [1] jobs), MRM would need to iden-
tify the critical path—the task sequence with the longest fin-
ish time—in the DAG. Second, to deal with deadline viola-
tions, MRM can offer a rebate to users when it violates their
deadlines, or appropriately define service-level agreements

to guarantee a certain level of predictability, thereby setting
user expectations. Lastly, mechanisms to detect and penal-
ize malicious users (e.g., those who inflate feature vectors)
would be essential in a production system.
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