CS694a, Fall 2011: Project, Part 1. CaseBook

Introduction and L ogistics

In this project, you will build a version of Facetkousing cloud computing technologies. Specifigaltyu will be given a
"cluster” of virtual machines on which to run therft-end for your Facebook implementation, whictsthuse the Cassandra
key-value store (hence the name CaseBook for thjeqd). The project will be due at 5 PM on OctoBeR011. You may choose
to do the project individually, but we recommencthiing a team of 2 people (larger teams are notvait).

The Project
You are expected to implement the following functibty:

* support for multiple CaseBoalsers: each user has a single unique ID (consisting ohglphanumeric characters),
and a name which may or may not be unique

* each user has one or mdriends, comprising their social network

* each user hasweall on which their posts, or those of their friendsistrappear. Each post can be at most 2K bytes in
size.

* each user has a photo album to which he or sheglaad any number of photos. Each photo can beoat BMB in
size.

This is clearly a simplified version of Faceboadkce you daot have to implement any of the following functiomyli
* Facebook email or chat

* support for multiple Facebook apps
e scaling to 500 million users!

Getting started on the project
To get started on the project, we recommend dowiiigaand understanding the two pieces of code ithestbelow.

Cassandra

As discussed above, Cassandra is a "key-valueg.dior keyvalue store, you can "put/adue associated with a specifiey,
andget the value associated with a specifieg. For scalability reasons, keyvalue stores areemphted in a distributed manner
across large cluster.

Cassandra is a project developed by the Apacheaaftfoundation, and you can downloadte We suggest you start soon,
download Cassandra and play with isingle-machine modén a couple of weeks, we will make a cluster afcinnes available
to you for more extensive experimentation.

You have several options for programming Cassar@asandra is built on top of the Thrift API, bevsral otheclientsexist
for it. If you would like to build on top of Twissdra (see below), you can use the Pycassa cliendégtgned for Python. You
may also want to check out Cassandca'simand-line interfaceyour choice of client APl may impact performarscel
scalability, so you might want to make this chaieeefully.

Twissandra

Twissandrds an example of a Twitter-like service that uSassandra as the backend storage. Twissandra esawviany of the
abstractions that you will use for CaseBook: ugtis social network, and posts (or tweets, in Tansksa's case). Also,
Twissandra's implementation contains the componesgded to host a Twitter-like service—a web seérack-end database,
etc.

You may either build CaseBook on top of Twissandrahoose to implement it completely from scrafh described below,
your goal in the project is to push on eale of your implementation; it is not clear if the Bsandra implementation supports
the scales that you will need. Even if you choasieiplement Casebook separately, you should definéxamine the
Twissandra code which will give you a good idedaW to structure Cassandra-based applications.

If you choose to build upon Twissandra, then youy firved thesenstructionson how to install Twissandra useful.

I mplementing the Project

As discussed above, you will implement four elemearitFacebook: users, their social network, wadtp@and photo albums. In
a real implementation, users will populate the with their information. However, for us to testy@roject, we require that you
implement functionality that would let us Llead your CaseBook implementation with input data (selew for details).

The goal of the project is to push smale andefficiency. What this means is that you implementation shbeldble tdoad as
large a social network as possible within atdbminute. Specifically, your implementation should suppéwt,the largest value
of X possible:

* Xusers

* 10 friends per user, on average (some users mayrhaxe than 10, some fewer than 10)
* 100 photos per user, on average

e 1000 wall posts per user, on average

The points you get for the project will be propontal to the value of X that your implementatioralide to achieve. Additionally,
as described below, page load times in your impigai®n must be reasonable, otherwise you maygosds for it.

To achieve these performance optimizations, you negyl to pay careful attention to how you strucyangr implementation
and use parallelism when possible. To understamgénformance of your system, you may need tolprivfio determine where
the bottlenecks are. If you notice bottlenecks as€andra itself, you are free (but not requireaihdalify Cassandra to improve
the performance of your system.

You are given considerable freedom in implementimegproject. For example, you can decide how mdi¢heofunctionality
you want to put into a front end server and how nfifcany) to put in backend servers. However, gan considerably simplify
the GUI, since this class is not about user interfdesign. You are free to choose a simple prpéilge/GUI. As you will notice,
the Twissandra GUI is much simpler than the actwatter page, and is a good example of the kingiwlifications you
should be looking at.

Input

http: // <home>/ . This homepage for your CaseBook site can havémaircontent (e.g., a welcome messada)addition, when
a user visitsit t p: / / <hoe>/ LOAD/ , your implementation should load the configurafide

fromhttp://enl.usc. edu/ ~cs694/ casebook/ confi g. t xt . YOUr implementation must execute the commandisarconfiguration
file, and print "Configuration File Uploaded" ordyter all the configuration commands have beenessfally executed. (While
testing your implementation, you can use your oviRLUWo download the configuration file. We will alptace a small
configuration file at the URL above, which you ¢aest before submission).

Moreover, the home page should have a separatep@set t p: / / <home>/ RESET/ Which, when visited, , should completely
erase the contents of CaseBook. This will enable uspeatedly upload different configuration fitegest your implementation.
Please pay attention to the performance of the:riéstould take no longer to reset CaseBook thtkes to load the
corresponding configuration fil@he configuration file is a series admmands, one per line:

* user <usertag> <nanme> <password>iS @ command that defines a CaseBook useert ag> is an alphanumeric
character string (no spaces) that uniquely ida#iéi useknane> is a string (in quotes) that represents the actaale
of the user and can be of arbitrary lengtasswor d> is an alphanumeric string. For example, a valplitrwould be:

user rameshg "Ranmesh Govi ndan" "foo"

* friend <usertagl> <usertag2> isa Command that specmes thatert agl> and<usert ag2> are CaseBook
friends. bhéd-6 ebeclWhenever a CaseBook user comments on
their wall or updates thelr photo album the commnerphoto is visible on the wall of all of thenidnds.

* wallpost <usertag> <posttext> specifies thatusertag> posts on his or her wall a message contaiggpagt t ext >.
The post is specified in quotes, and you can asshateach post is no longer than 2K bytes. An @lamof a
valid wal | post command is:

wal | post rameshg "I saw a ni ce novi e yesterday"

* photo <usertag> <URL> specifies thatusert ag> uploads a photo available<RL>. Your scripts should use photos
available abt t p: // enl . usc. edu/ ~cs694/ casebook/ phot os/ and you can assume that that URL will have 10agsho
numbered photol.jpg, photo2.jpg, etc. (Note thatdsting the scaling of your implementation, yam @always re-use
photo images). Thus, an example of a vatiet o command is:

. photo rameshg http://enl.usc. edu/ ~cs694/ phot os/ phot 010. j pg

Please keep in mind a couple of restrictions. Fyatir implementation shouMOT use any client side code (e.g.,
Javascript). Second, you should store photos ieBa@sk,NOT links to photos.

Output

As specified below, you will submit the largest figaration file that you have been able to uploagdur CaseBook
implementation in undet minute (i.e., the upload should finish in under 1 minuf&y discussed above, your upload program
should return only when it has finished executitighe commands in the configuration file. If itwens earlier, and we are
unable to examine any of the user pages (see hegfow)will be penalized.

Once the upload is done, we should be able to usrs' walls and photo albums as follows:

* We should be able to gotet p: / / <hone>/ <user t ag>/ to view the corresponding user's CaseBook page gkould
present a password prompt to authenticate the ifisiee, user has not recently been authenticafiédy should display
the top 200 items on the user's wall (wall postetp album additions) in reverse chronological grdéth an option
to show 100 more items each time. The page loaekstiior this page must be optimized; if it is nogicly slow, you
may lose points.

* We should be able to gotiet p: / / <home>/ <user t ag>/ phot os t0 view the corresponding user's photos. This shou
display the top 20 items in the user's photo albureverse chronological order, with an optiontow 100 more
items each time. The page load times for this pagst be optimized; if it is noticeably slow, youyrase points.

Submitting the Project
On Blackboard, you will upload the following twdes:

* Areport.pdf thatis no more than 1 page and contains two shing
e Yourhttp://<home>/ URL

* A brief description of your implementation struawand what optimizations you did in order to improv
scalability

* Aconfig. txt file containing the largest configuration file treafely works on your implementation and takes tean
a minute to load.

More detailed submission instructions will be givater.
Acknowledgement

Abhishek Sharmeame up with the idea for, and helped draft, ttogept description.

CS694a, Fall 2011: Project, Part 2: CaseBook Search

Introduction and L ogistics

In this part, you are asked to add scoped seargtiifunality to CaseBook, building upon your CaseBaooplementation in part

The project will be due at midnight on Decembe2@11.

The Project
You are expected to implement the following (deivghy simple) functionality:

* Search the wall posts of a user, his/her friendsl posts, or all wall posts for keywords.

* Search photos of a user, his/her friends or altgghfor photos with at least faces in them, whema is a search
parameter.

I mplementing the Project

To implement this functionality, you may need tdlthsearch indices that speed up search respanse Yiou may store these
indices in Cassandra or any other storage struofureur choice. As before, your project will beaded on theerformance of
your implementation.

Your implementation must compute these indicesima{las wall posts or photos are inserted usingdinéiguration file) unlike
some real systems where, because indexing is @Esqtensive, it is often done in the backgrounfic@irse, this means that
you may be able to load smaller configuration ftlesn in Part 1: this is perfectly acceptable.

Finally, your implementation may need to use a fdefection algorithm; you may use one of severailable on the web.

Your implementation will be graded on 2 aspectpaformance: the largest configuration file thai ba correctly loaded in
under2 minutes; and the correctness and response time of a yafisearches conducted on your implementation.

As with Part 1, to optimize performance, you magdto pay careful attention to how you structurerymplementation and
use parallelism when possible. To understand tHenqpeance of your system, you may need to profite determine where the
bottlenecks are.

Input

As in Part 1, when a user visitst p: / / <home>/ LOAD/ , your implementation should load the configurafiibe
fromhttp://enl . usc. edu/ ~cs694/ casebook/ confi g. t xt . The configuration file syntax for Part 2 isidentical to that of Part 1.
Your implementation must execute the commandserctmfiguration file, build indices online and griConfiguration File
Uploaded" only after all the configuration commahdse been successfully executed and all necesghicgs have been
constructed.

After loading the configuration file, we will rureseral search queries on your implementation bpding searches as URLs.
These encodings will, in general, have the follapfiormat:

htt p:// <honme>/ SEARCH?user =<u>&t ype=<t >&scope=<s>&t er ng=<t >

The search parameters have the following semantics:

* Theuser parameter specifies that search is to be perfofreedthe perspective of the user whose tagis This
perspective is important for the scoped searchl{skmv).

* Thetype of the search is eithgbst orphot 0. The former specifies a search on wall posts, thadatter a search on
photos for faces.

* Thescope of the search can be oneuskr, snet, orgl ob. A user scope indicates that ondy>'s posts/photos should
be searched,smet scope indicates that all posts/photstey and his/her friends should be searched, andtascope
indicates that all posts/photos in the system shbalsearched.

* Finally, <t m» depends upon the seatglpe. For aphot o searchgt me is an integer specifying the minimum number of
faces required in a photo. For examplet if» is 2, then your search must return all photos watifleast 2 facesin
them. For apost searchgt me is a sequence of search keywords, with spaceaceghby the character. For
examplef oo+bar +baz specifies a search for posts contairahtpast one of the words oo, bar, Orbaz.

Output

All search results must be displayed on a single page in inverse chronological order. It is not necessary to spend a lot of time on
formatting the search response, since this classtiabout user interface design.

As discussed above, your implementation will belgthon two criteria. First, it will be graded o therformance of loading
and indexing, specifically, the largest configuratfile that can be loaded or indexed witBiminutes. More precisely, we
should be able to issue the following command feocommand-line in order to time the configuratioading time:

% time wget http://<hone>/ LOAD/
If necessary, we should also be able to resetiyoplementation using:

% wget http://<home>/ RESET/

Second, your project will be graded on the complete and responsiveness of the search. Specifialbyst queries must
return all posts within the specified scope andcimnag the specified terms. However, it is accegdbt aphot o search to be
slightly inaccurate: face detection algorithms hewell false positive and false negative rates widime the response to each
search; faster searches will receive more pointselprecisely, we should be able to time a seassahawn in the following
example:

% time wget "http://<hone>/ SEARCH?user =user 1&t ype=post &cope=gl ob&t er ne=Chur chi I | +W nst on"

Submitting the Project
On Blackboard, you will upload the following twdes:
* Avreport.pdf thatis no more than 1 page and contains two shing

* Yourhttp://<home>/ URL

* A brief description of your implementation struewand what optimizations you did for indexing ardrsh
response times

* Thelargest X (number of users, see Part 1) cordtgn file that your Part 2 implementation candoa
More detailed submission instructions will be givater.
Acknowledgement

Abhishek Sharmeaame up with the idea for, and helped draft, ttogept description.

