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Education

University of Southern California, Los Angeles
Ph.D. in Computer Engineering Expected May 2016
Advisor: Ramesh Govindan & Minlan Yu
Thesis: Scalable, timely and accurate network management systems for datacenters
Sharif University of Technology, Tehran, Iran
MSc in Information Technology Engineering Jan 2010
Advisor: Hamid R. Rabiee
Thesis: LayeredCast: A hybrid peer-to-peer architecture for real-time layered video streaming over Internet
Sharif University of Technology, Tehran, Iran
BSc in Information Technology Engineering Sep 2007
Thesis: MobiSim: Design and implementation of a mobility model simulator in mobile ad-hoc networks

Research Interests

I develop networked systems based on Software-defined Networking (SDN) paradigm to achieve scalable,
timely and accurate network management. I am interested in measuring traffic and controlling switches
and middleboxes inside a network and at end-hosts.

Awards and Accomplishments

Google US/Canada Ph.D. fellowship in Computer Networking 2015
Student poster contest winner in NANOG on the Road - Los Angeles 2014
USC Provost Ph.D. fellowship recipient 2010
1st GPA among IT Engineering students & 2nd among CE 80+ (HW, SW, AI, IT) students in MSc 2010
1st GPA among IT Engineering students & 4th among 110+ CE (HW, SW, IT) students in BSc 2007

Publications

Software Defined Networking

1. M. Moshref, M. Yu, R. Govindan, A. Vahdat, SCREAM: Sketch Resource Allocation for Software-defined
Measurement, CoNEXT, 2015

2. O. Alipourfard, M. Moshref, M. Yu, Re-evaluating Measurement Algorithms in Software, HotNets, 2015
3. M. Moshref, M. Yu, R. Govindan, A. Vahdat, DREAM: Dynamic Resource Allocation for Software-defined
Measurement, SIGCOMM, 2014

4. M. Moshref, A. Bhargava, A. Gupta, M. Yu, R. Govindan, Flow-level State Transition as a New Switch
Primitive for SDN, HotSDN, 2014

5. M. Moshref, M. Yu, A. Sharma, R. Govindan, Scalable Rule Management for Data Centers, NSDI, 2013
6. M. Moshref, M. Yu, R. Govindan, Resource/Accuracy Tradeoffs in Software-Defined Measurement,
HotSDN, 2013

7. M. Moshref, M. Yu, A. Sharma, R. Govindan, vCRIB: Virtualized Rule Management in the Cloud, Hot-
Cloud, 2012
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P2P Video Streaming

8. M. Moshref, R. Motamedi, H. Rabiee, M. Khansari, LayeredCast - A Hybrid Peer-to-Peer Live Layered
Video Streaming Protocol, International Symposium on Telecommunication (IST), 2010

9. M. Moshref, H. Rabiee, S. Nari, Challenges and Solutions in Peer-to-peer Live Video Streaming, Tech.
rep. Computer Engineering, Sharif University of Technology, 2009

Mobile Ad-hoc Networks

10. M. Mousavi, H. Rabiee, M. Moshref, A. Dabirmoghaddam, Mobility Pattern Recognition in Mobile Ad-
Hoc Networks, ACM International Conference on Mobile Technology, Applications and Systems,
2007

11. M. Mousavi, H. Rabiee, M. Moshref, A. Dabirmoghaddam, Model Based Adaptive Mobility Prediction
in Mobile Ad-Hoc Networks, IEEE WiCOM, 2007

12. M. Mousavi, H. Rabiee,M.Moshref, A. Dabirmoghaddam, Mobility Aware Distributed Topology Control
in Mobile Ad-hoc Networks with Model Based Adaptive Mobility Prediction, IEEE WiMob, 2007

13. M. Mousavi, H. Rabiee, M. Moshref, A. Dabirmoghaddam, MobiSim: A Framework for Simulation of
Mobility Models in Mobile Ad-Hoc Networks, IEEE WiMob, 2007

Others

14. M. Moshref, A. Sharma, H. Madhyastha, L. Golubchik, R. Govindan, MRM: Delivering Predictability and
Service Differentiation in Shared Compute Clusters, Tech. rep. Computer Science, USC, 2013

15. A. Gharakhani, M. Moshref, Evaluating Iran’s Progress in ICT Sector Using e-Readiness Index, A System
Dynamics Approach, International System Dynamics Conference, 2007

Work in Progress

16. M. Moshref, M. Yu, R. Govindan, A. Vahdat, Trumpet: Timely and Precise Triggers in Data Centers,
Submitted to SIGCOMM, 2016

17. M. Moshref, A. Sharma, H. Madhyastha, L. Golubchik, R. Govindan, Paradise: Enabling Differentiated
Service with Predictable Completion Time in Shared Compute Clusters, In preparation

18. S. Zhu, J. Bi, C. Sun, H. Chen, Z. Zheng, H. Hu, M. Yu, M. Moshref, C. Wu, C. Zhang, HiPPA: a High-
Performance and Programmable Architecture for Network Function Virtualization, In preparation

Refereed Posters

19. M. Moshref, A. Bhargava, A. Gupta, M. Yu, R. Govindan, Flow-level State Transition as a New Switch
Primitive for SDN, SIGCOMM, 2014

20. M. Moshref, M. Yu, R. Govindan, A. Vahdat, DREAM: Dynamic Resource Allocation for Software-defined
Measurement, NANOG on the road, 2014

21. M. Moshref, M. Yu, R. Govindan, Software Defined Measurement for Data Centers, NSDI, 2013
22. M. Moshref, A. Sharma, H. Madhyastha, L. Golubchik, R. Govindan, MRM: Delivering Predictability and
Service Differentiation in Shared Compute Clusters, SoCC, 2013

Teaching and Advising Experience

Teaching Assistant
University of Southern California: Introduction to Operating Systems (CSCI350) 2014
Sharif University of Technology: Object Oriented System Design (2 semesters), Cryptography
Theory, Multimedia Systems, Web Programming, Information Technology Project Manage-
ment, Computer Workshop (3 semesters)

2005-2009

Guest Lectures
Computer Communications (CSCI551), University of Southern California 2015
Software Defined Networking (CSCI694b), University of Southern California 2014
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Mentoring
Omid Alipourfard (USC, CS Ph.D.): Optimizing Network Measurement in Software Switches 2015
Harsh Patel (USC, CS MSc): Virtualizing Rate-limiters in SDN 2014
Aditya Kamath (Viterbi-India program, Undergraduate): Implementing Sketches in Software
Switches

2014

Adhip Gupta (USC, CS MSc): Flow-level State Transition as a New Switch Primitive for SDN 2014
Apoorv Bhargava (USC, CS MSc): Flow-level State Transition as a New Switch Primitive for
SDN

2014

Professional Experience

Research Assistant, University of Southern California (Networked Systems Labora-
tory), Los Angeles

Spring 2011 - Present

• Resource allocation for accurate network measurement: I explored the tradeoff space of resource usage
versus accuracy for different network measurement primitives [6]. I quantified these tradeoffs in the
context of hierarchical heavy hitter detection for two primitives: flow-counters (TCAMs) and hash-
based counters (sketches). In addition, I proposed an SDN controller framework to allocate network
resources for concurrent measurement tasks while guaranteeing their accuracy for flow-counters
(DREAM [3]) and sketches (SCREAM [1]). I designed a fast and stable allocation control loop and
algorithms based on probabilistic bounds for estimating instantaneous measurement accuracy as a
feedback for the control loop. I released a prototype of DREAM for OpenFlow switches and Floodlight
framework.
• Timely accurate measurement on software switches: I quantified the performance and accuracy effects
of different memory-saving algorithms for network measurement on software switches based on
a Click + DPDK implementation [2]. Then I developed a timely and accurate event detection for
datacenters, Trumpet [16]: I designed the network-wide event definition language and the controller
system to support the events using triggers at end-hosts. I developed a fast packet processing
framework at end-hosts on top of DPDK to run expressive measurement codes for triggers.
• Scalable rule management: I proposed vCRIB [5, 7] as a scalable way to place networking rules dy-
namically in a datacenter having devices with limited rule capacity. I proposed an approximation
algorithm with a proved bound plus an online refinement algorithm to solve a novel version of
bin-packing optimization problem for rule placement.
• State machines for programming switches: I proposed a switch programming primitive to support
state machines inside switches. I led two graduate students in developing FAST [4], the controller
framework and the switch architecture (using components already available in commodity switches)
to support the new primitive.
• Differentiated service with predictable completion time for Map-Reduce: I proposed MRM [14, 22], a man-
agement system for Map-Reduce framework. MRM provides service differentiation to delay-sensitive
jobs along with predictable finish times for all jobs, delay-sensitive as well as delay-tolerant, in en-
terprise data analytics clusters shared by multiple users. I used Gaussian Processes to predict tasks
duration. My implementation on a 40-node Hadoop cluster and simulations show MRM superior
performance vs. priority queues and FCFS queues.

Graduate Student Researcher, Sharif University of Technology (Digital Media Labo-
ratory), Tehran, Iran

Fall 2006 - Winter 2010

• Developed MobiSim [13], a mobility trace generator, evaluator, and analyzer framework. I Maintained
the code on SourceForge.com and it had over 5k downloads and 60 citations. I also used MobiSim to
improve distance prediction in Ad-hoc networks [11], propose new power-aware topology manage-
ment protocol [12], and test a new mobility pattern recognition algorithm [10].
• Proposed LayeredCast [8], a hybrid live layered video streaming protocol on peer-to-peer networks.
LayeredCast pushes the basic layer of video frames in a tree topology to guarantee smooth video
play and pulls the enhanced layers in a mesh topology to improve video quality wherever extra
bandwidth is available. I evaluated LayeredCast in an innovative simulation framework on top of
OMNET++.
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J2EE Developer, System Group (Sepehre Mehr), Tehran, Iran Summer 2007
Sepehre Mehr was a web-based educational software development startup company bought by System
Group, one of the largest software companies in Iran.
• Developed the exam module in their online education system using J2EE framework (Hibernate and
Jboss)
• Performed the analyze phase of a faculty assessment system in the medical branch during one week
on-site interviews with administrative staffs in Shiraz University

Flash Application Programmer, Simin Negar, Tehran, Iran Winter 2007
Simin Negar is a startup company established by former AICTC employees. I got a contract to develop an
object oriented Flash quiz generator application with 7 templates which connects to a CMS using an XML
interface. The templates were used in exams for almost 20 courses.

CMS Supporter, AICTC, Tehran, Iran 2004 - 2006
AICTC is a startup company related to Sharif University of Technology providing consulting services and
developing and localizing open-source portals.
• Produced e-learning contents as the standard model for out-sourced companies that create SCORM-
based online university courses
• Developed interfaces for uPortal channels using HTML, XSD and CSS
• Took the initiative to learn HyperContent CMS which uses an XML based form generator and XSD
based templates to generate online courses
• Set up AICTC CMS group, training the members and presenting on-site workshops for customer’s IT
staffs

Presentations

• DREAM: Dynamic Resource Allocation for Software-defined Measurement, SIGCOMM & Samsung
Electronics, 2014
• Flow-level State Transition as a New Switch Primitive for SDN, HotSDN, 2014
• Resource Virtualization for Software Defined Networks: NEC Labs & RSRG group in Caltech & Center
for Networked Systems in UCSD & CS department in Princeton University & CS201 Seminar course
in UCLA, 2014
• Scalable Rule Management for Data Centers, NSDI & Cognizant Technologies, 2013
• vCRIB: Virtualized Rule Management in the Cloud, HotCloud, 2012

Academic Service

Journal Review: Transaction on Networking, Transaction on Communication, Transactions on Depend-
able and Secure Computing, Transactions on Network and Service Management, Transactions on Parallel
and Distributed Systems, Communications Letters, Wireless Networks (WINE), Computer Communication
Review

External Reviewer: PAM’15, Performance’15, ANCS’14, HotCloud’14, HotSDN’14, CoNEXT’14

Co-chair for NSDI Shadow PC (2013, 2014, 2015)
We selected a representative set of NSDI submitted papers to review. We set-up HotCRP similar to the
original conference and hold PC meetings to practice the decision making process. At the end, we shared
our reviews with authors and compared our decisions and reviews with actual PC’s for a subset of papers.
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Masoud Moshref Javadi - Research Statement
I am a systems researcher in the field of computer networking. I propose efficient algorithms (ap-
proximation, greedy, distributed, scheduling), define abstractions (hide complexities, are general,
expose tradeoffs) and develop systems (fast, distributed, at switches and end-hosts) to solve real-
world networking problems. In particular, I am interested in designing and implementing systems
for operators to manage networks more efficiently. My research is motivated by the fact that we
need to achieve high levels of performance and availability in networks with huge scale, but our
solutions for managing networks are primitive. Thus, I build scalable, timely and accurate
network management systems.

New networks especially datacenter networks have tight requirements in scale, timeliness and accu-
racy. Datacenter networks have huge scale: They connect hundreds of thousands of servers inside
a datacenter using thousands of network switches that must work in coordination. The bandwidth
demand on these networks is in the millions of Gbps and is doubling every 12 months. Thou-
sands of users concurrently use the network for applications with diverse requirements. Networks
must work accurately: An inaccurate network control can cause congestion and packet losses that
damage the performance of prevalent short connections. A challenge is that a device failure is a
common event because such networks are usually built upon commodity devices. Networks must
react fast: The end-to-end latency requirement is in microseconds. Traffic patterns among servers
are unpredictable and change rapidly in tens of milliseconds.

However, the management tools for operators are too limited. Network operators are involved
in every aspect of datacenters from design and deployment to operation, from fault detection to
application performance optimization to security. However, they have a limited view of network
events and limited tools to control the response to the events. Inaccurate measurement tools prevent
operators from knowing where bandwidth bottlenecks are and why network packets are delayed.
Slow measurement tools increase the delay of detecting a failure or an attack to minutes. Even after
detecting the events, the control system that reacts to the events must scale to thousands of switches
and hundreds of application requirements. Slow control systems cannot react in milliseconds to
be effective for the variable network traffic patterns and to hide the effect of failures and resource
congestions from user applications. Moreover, current inaccurate control systems let errors and
human mistakes go through and cause inaccessible services for hours even in big companies like
Google and Time Warner cable.

Dissertation Work

Software-Defined Networking (SDN), a new trend in networking, distinguishes two layers in net-
works: the control plane running at a logically centralized server that enforces high-level policies
by making routing decisions and the data plane at switches that applies the decisions in forwarding
traffic. The centralized controller receives measurements from switches and sends routing decisions
to them using a standard protocol (e.g., OpenFlow). SDN allows users to define their own virtual
networks on top of the shared physical network and to measure and control them through the
applications running on the controller. The operators must decide where and how to run those
applications to scale to thousands of users on top of thousands of switches with limited resources
without compromising accuracy or timeliness.
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Network management involves both measurement and control since controlling a network is not
possible without observing the events in the network. In my dissertation, I built both accurate and
timely measurement systems and timely and scalable network control systems. I worked on systems
that run on hardware switches and end-hosts. For hardware switches, I defined general abstractions
for operators that free them from the complexities imposed by hardware resource limitations. For
end-hosts, I studied the effect of computer architecture on packet processing and used the result to
improve measurement and control systems.

Accurate, yet resource efficient, measurement: Measurement tasks require significant band-
width, memory and processing resources, and the resources dedicated to these tasks affect the
accuracy of the eventual measurement. However, the resources are limited, and datacenters must
support a variety of concurrent measurement tasks. Thus, it is important to design a measurement
system that can support many tasks and keep all of them accurate on a network with limited
resources.

Measurement tasks can be implemented using different primitives with different resource accuracy
tradeoffs. I qualitatively and quantitatively explored the tradeoff space of resource usage versus
accuracy for three different primitives [6]: (a) Flow counters monitor traffic in hardware switches
using expensive and power hungry TCAM (ternary content-addressable memory) and are available
in commodity switches. (b) Hash-based counters can express many more measurement task types
with higher accuracy and use cheap SRAM memory, but are not available yet. (c) Arbitrary
program fragments are more expressive, but they are only possible at end-hosts and have complex
resource-accuracy tradeoffs. Focusing on flow counters and hash-based counters, I noticed that
although the accuracy of a measurement task is a function of its allocated memory on each switch,
this function changes with traffic properties, which forces operators to provision for the worst case.

I developed DREAM [3] for flow counters and SCREAM [2] for hash-based counters to provide
operators with the abstraction of guaranteed measurement accuracy that hides resource limits
from operators. The insight is to dynamically adjust resources devoted to each measurement task
and multiplex TCAM and SRAM entries temporally and spatially among them to support more
accurate tasks on limited resources. The key idea is an estimated accuracy feedback from each task
that enables iterative allocations. I proposed new algorithms to solve three challenges: (a) Network-
wide measurement tasks that can correctly merge measurement results from multiple switches with
a variable amount of resources. (b) Online accuracy estimation algorithms for each type of task that
probabilistically analyse their output without knowing the ground-truth. (c) A scalable resource
allocation algorithm that converges fast and is stable.

I built a prototype of DREAM on OpenFlow switches with three network-wide measurement task
types (heavy hitter, hierarchical heavy hitter and change detection), and I showed that DREAM
can support 30% more concurrent tasks with up to 80% more accurate measurements than fixed
allocation. For SCREAM, I have implemented heavy hitter, hierarchical heavy hitter and super
source detection task types. Simulations on real-world traces show that SCREAM can support 2x
more tasks with higher accuracy than the state-of-the-art static allocation and the same number
of tasks with comparable accuracy as an oracle that is aware of future task resource requirements.

Scalable, timely and accurate measurement: With growing concerns of the cost, management
difficulty and expressiveness of hardware network switches, there is a new trend of moving mea-
surement and other network functions to software switches at end-hosts. I implemented a subset of
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measurement algorithms in software to re-evaluate their accuracy and performance for traffic traces
with different properties [1]. I observed that modern multicore computer architectures have signif-
icantly increased their cache efficiency and cache size to the extent that it can fit the working set
of many measurement tasks with a usually skewed access pattern. As a result, complex algorithms
that trade off memory for CPU and access many memory entries to compress the measurement data
structure are harmful to packet processing performance. Then I developed an expressive scalable
measurement system on servers, Trumpet [8], that monitors every packet in 10G links with small
CPU overhead and reports events in less than 10ms even in the presence of an attack. Trumpet is
an event monitoring system in which users define network-wide events, and a centralized controller
installs triggers at end-hosts, where triggers run arbitrary codes to test for local conditions that
may signal the network-wide events. The controller aggregates these signals and determines if the
network-wide event indeed occurred.

Scalable control: In SDN, applying many high-level policies such as access control requires
many fine-grained rules at switches, but switches have limited rule capacity. This complicates the
operator’s job as she needs to worry about the constraints on switches. I leveraged the opportunity
that there can be different places, on or off the shortest path of flows, to apply rules if we accept
some bandwidth overhead and proposed vCRIB [5,7] to provide operators with the abstraction of a
scalable rule storage. vCRIB automatically places rules on hardware switches and end-hosts with
enough resources and minimizes the bandwidth overhead. I solved three challenges in its design: 1)
Separating overlapping rules may change their semantics, so vCRIB partitions overlapping rules to
decouple them. 2) vCRIB must pack partitions on switches considering switch resources. I solved
this as a new bin-packing problem by a novel approximation algorithm with a proved bound. I
modeled the resource usage of rule processing at end-hosts and generalized the solution to both
hardware switches and end-hosts. 3) Traffic patterns change over time. vCRIB minimizes traffic
overhead using an online greedy algorithm that adaptively changes the location of partitions in
the face of traffic changes and VM migration. I demonstrate that vCRIB can find feasible rule
placements with less than 10% traffic overhead when traffic-optimal rule placement is infeasible.

Timely control: Current SDN interface, OpenFlow, requires the centralized controller to be in-
volved actively in any stateful decision even though the event and action happen on the same
switch. This adds 10s of ms delay on packet processing and huge computation overhead on the
controller, which makes it hard for operators to implement middlebox functionalities in SDN. I
proposed a new control primitive in SDN, flow-level state machines, that enables the controller to
proactively program switches to run dynamic actions based on local information without involving
the controller. I developed FAST [4], the controller and the switch architecture using components
already available in commodity switches to support the new primitive. This motivated a collabo-
ration with Tsinghua University on HiPPA [9] project that dynamically chains state machines in
hardware and software in order to improve the performance of software-based middleboxes and the
flexibility of hardware-based ones.

Future Work

My dissertation work focuses more on measurement, but once a controller can observe network
events in a scalable, timely and accurate fashion, it can achieve a lot using that information. In
the future, I will focus on how far we can push these attributes in network control and what new
services they will make possible. My approaches are (a) Defining new primitives that allow the
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right delegation of network control functionalities among end-hosts, hardware switches and the
controller. (b) Exploring the tradeoff between scalability, timeliness, accuracy and other aspects
such as quality of service (QoS), privacy and power efficiency. (c) Defining the right abstraction
based on the tradeoff that hides the complexities inside the network from operators and developing
systems that implement the abstraction in an efficient and reliable way.

Ensuring network isolation and fairness: One of the main concerns of businesses for moving
services to public clouds is how collocating applications of different businesses on the same set of
servers and the same network affects their performance. Different applications require different
classes of service from a network. Different classes should not affect each other, and flows in the
same class should receive fair service with minimum overhead. Current solutions are not scalable
and timely enough: First, the scale of the problem is large as there are millions of flows per second
in a datacenter, and a flow may compete for resources with other flows at multiple places around
the network. However, CPU cores at servers and traffic shapers (queues) at switches are limited.
Second, contention can happen in very small time-scales. My observation is that there are different
places in a datacenter that can apply fairness and isolation with different tradeoffs and improve
scalability, e.g., hypervisor and NIC at servers and traffic shapers at switches inside the network.
I will explore the tradeoff of accuracy, timeliness and resource usage among these options. In
addition, a timely measurement system can help timely reaction to flow contentions. I will design
a scalable and fast coordinating system that responds to flow interactions in small time-scales and
provides the abstraction of an isolated fair network to operators.

Scalable middlebox control: The number of middleboxes (usually stateful devices that inspect
and manipulate traffic instead of just forwarding it, e.g., intrusion detection) and their management
overhead is comparable to network switches. Today, datacenters use expensive hardware to go
through traffic in line rate for tasks such as attack detection and load balancing. This solution
is not scalable to the fast increasing traffic inside datacenters where different tenants use each
other’s services. On the other hand, software middleboxes (network function virtualization) impose
overhead on CPUs at servers, network bandwidth and packet latency. To make a scalable solution,
part of the computation inside middleboxes can be delegated to network measurement in order to
filter their input traffic, reduce their overhead and guide their scale. For example, I want to explore
how network measurement can dynamically select the traffic that must go through the middleboxes,
what is the right primitive to let middleboxes delegate their computations to measurement elements,
and how to attribute the resource usage of a middlebox to traffic properties in order to scale out/up
middlebox resources efficiently.

Accurate network control by packet-level network-wide validation & diagnosis: Network
operators change network configuration frequently because of device faults/upgrades, new appli-
cations and variable traffic patterns. However, there are simply too many places that can induce
error: the translation of policies to switch configurations; interaction of different configurations
(sometimes at different switches); saving the configurations at network switches; and hardware
faults at switches. Such errors may only affect a subset of packets but still damage the performance
of applications. Unfortunately, they are not detectable by traditional measurement tools (e.g.,
SNMP) or current static configuration checkers. The only way to make sure network control is ac-
curate is through validation. I plan to develop a system to automatically translate control policies
and network-wide invariants to the right packet-level measurement tasks and validate them. In
addition, I will explore the solutions to diagnose the root-cause of a validation failure.
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Controlling heterogeneous networks: In the near future, new networking technologies such
as Intelligent NICs with TCAM, optical switches with fast configuration capabilities and wireless
communication among racks will be deployed in production datacenters and will co-exist with cur-
rent technologies. However, still there is no complete control system to help operators decide when
and how to use such technologies. For example, I want to explore what types of applications benefit
from intelligent NICs and how to dynamically push network functionalities to them without involv-
ing the operator. Moreover, I am interested in detecting traffic demands online and automatically
scheduling them on Ethernet, optical networks and wireless networks to improve quality of service
(QoS).

The marriage of measurement primitives: The work on measurement is not finished. Al-
though, in my previous work, I explored the tradeoffs for different measurement primitives, I have
never examined how to combine different primitives to leverage their strength points to cover each
other weaknesses. For example, while sketches may find heavy hitters fast, their output always has
some random errors. In contrast, flow-counters always provide exact values but must iterate to find
a heavy hitter. In applications such as accounting where we need exact counters for heavy users,
these two primitives can collaborate to detect heavy hitters fast with exact numbers. Similarly, ex-
pressive code-fragments at end-hosts can guide expensive measurements inside the network. There
are other interesting cases for combining sampling with flow-counters and so on.
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Masoud Moshref Javadi - Teaching Statement
Teaching and advising are essential and exciting parts of an academic career. I can teach networking
and operating systems along with introductory programming courses in undergraduate level and
present software-defined networking, cloud computing and distributed systems in graduate level.
I look forward to mentoring students to learn and practice critical thinking, problem-solving and
presentation skills.

I love learning, and I enjoy helping others experience the learning process. That is why I started
teaching back in my undergraduate study in Sharif University of Technology where I was TA for
many courses. An exceptional experience was the Computer Workshop lab for freshmen that is
taught completely by senior and graduate students under the supervision of a faculty and a head
TA. I presented for two semesters and was the head TA once. In USC during my Ph.D., I was TA
for undergraduate Operating Systems (OS) course that involved a major programming project. I
presented lectures for guiding 70 students through the project, held office hours and graded the
project assignment. I have also been the guest lecturer for two courses and advised undergraduate
and graduate students. In the following, I describe my teaching philosophy to facilitate learning
and my goals in course development.

Learning by doing: I believe students will be more excited to learn about a topic once they
use it in experience even in an emulated environment. When something does not work in the
experience, students have to refer back to theories and techniques they may have overlooked during
the lecture. Even better, once students work on real systems (many available open-source), they
learn the complexities of actual systems, an experience that is also valued in the industry. When I
was TA for the OS course, I held office hours to answer students question for a project on Pintos
(an instructional OS). I had to review different concepts such as synchronization and memory
management for students to help them finish the project.

Learning by immediate feedback: Learning is not possible without feedback. There are many
ways to reduce the time to give feedback to students: (a) For the hands-on projects, the public
test cases uncover (sometimes trivial) mistakes for students in an instance. Thus, they do not
need to wait until office hours. (b) For many of the hands-on experiences, it is possible to make a
competition. I remember I had a cloud computing course in USC, and the goal was to implement
the fastest distributed system to process texts and photos in a photo-sharing service. Being able
to compare the performance of my implementation with other groups was a continuous motivation.
(c) I found the online discussion forums (e.g., Piazza) very helpful for students to get answers on
recurring questions fast. In addition, they provide a platform for students to share knowledge.

Learning through research in graduate courses: I believe graduate courses should be designed
around research through different practices: (a) Reviewing basic (sometimes old) papers because in
computer science old ideas come up again and again in new contexts. I was thrilled during Advanced
Operating Systems course in USC to know how much designing a fast remote procedure call has
common with new techniques for bypassing network stack. (b) Reviewing state-of-the-art papers
by a presentation from authors or guest lecturers. I have been the guest lecturer in two courses
in USC describing my work and a topic in my research. I enjoyed the experience that students
could ask directly about the process of coming up with the idea, the research challenges and future
work, the opportunity that is not possible just by reading papers. (c) Performing a research project
on a cutting edge problem but in small scale. This provides a taste of what happens in research
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laboratories, but it can result in a publication (most likely a workshop paper) in a semester. I have
advised a few graduate students on their course projects, which ended up with a workshop paper.
Because the project was small, two graduate students could finish it during a semester and even
have enough time to make mistakes and try different solutions.

Course development: I am looking forward to presenting courses on special topics such as cloud
computing, datacenter networks, distributed systems, optimization in networking and software-
defined networking for graduate level. Especially, I will pitch the courses around real-world net-
working problems when computing happens at large scale with low delay and high availability
requirements. I show how to abstract a problem to apply theory and how to make it practical us-
ing system building techniques. I also want students to read papers about operational networking
systems in the experience track of conferences in order to understand how research ideas are real-
ized in operation and what challenges happen in deploying the systems. For undergraduate level, I
can teach courses on networks, operating systems, data structures and introductory programming
courses.

2 of 2



DREAM: Dynamic Resource Allocation for
Software-defined Measurement

Masoud Moshref† Minlan Yu† Ramesh Govindan† Amin Vahdat∗
†University of Southern California ∗Google and UC San Diego

ABSTRACT
Software-defined networks can enable a variety of concurrent, dy-
namically instantiated, measurement tasks, that provide fine-grain
visibility into network traffic. Recently, there have been many pro-
posals to configure TCAM counters in hardware switches to moni-
tor traffic. However, the TCAM memory at switches is fundamen-
tally limited and the accuracy of the measurement tasks is a func-
tion of the resources devoted to them on each switch. This paper de-
scribes an adaptive measurement framework, called DREAM, that
dynamically adjusts the resources devoted to each measurement
task, while ensuring a user-specified level of accuracy. Since the
trade-off between resource usage and accuracy can depend upon the
type of tasks, their parameters, and traffic characteristics, DREAM
does not assume an a priori characterization of this trade-off, but
instead dynamically searches for a resource allocation that is suf-
ficient to achieve a desired level of accuracy. A prototype imple-
mentation and simulations with three network-wide measurement
tasks (heavy hitter, hierarchical heavy hitter and change detection)
and diverse traffic show that DREAM can support more concurrent
tasks with higher accuracy than several other alternatives.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]; C.2.3 [Network
Operations]: Network monitoring; C.2.4 [Distributed Systems]:
Network operating systems

Keywords
Software-defined Measurement; Resource Allocation

1. INTRODUCTION
Today’s data center and enterprise networks require expensive

capital investments, yet provide surprisingly little visibility into
traffic. Traffic measurement can play an important role in these
networks, by permitting traffic accounting, traffic engineering, load
balancing, and performance diagnosis [7, 11, 13, 19, 8], all of
which rely on accurate and timely measurement of time-varying
traffic at all switches in the network. Beyond that, tenant services
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in a multi-tenant cloud may need accurate statistics of their traffic,
which requires collecting this information at all relevant switches.

Software-defined measurement [39, 25, 31] has the potential to
enable concurrent, dynamically instantiated, measurement tasks. In
this approach, an SDN controller orchestrates these measurement
tasks at multiple spatial and temporal scales, based on a global
view of the network. Examples of measurement tasks include iden-
tifying flows exceeding a given threshold and flows whose volume
changes significantly. In a cloud setting, each tenant can issue dis-
tinct measurement tasks. Some cloud services have a large number
of tenants [1], and cloud providers already offer simple per-tenant
measurement services [2].

Unlike prior work [39, 35, 31, 29], which has either assumed
specialized hardware support on switches for measurement, or has
explored software-defined measurements on hypervisors, our paper
focuses on TCAM-based measurement in switches. TCAM-based
measurement algorithms can be used to detect heavy hitters and
significant changes [31, 41, 26]. These algorithms can leverage ex-
isting TCAM hardware on switches and so have the advantage of
immediate deployability. However, to be practical, we must address
a critical challenge: TCAM resources on switches are fundamen-
tally limited for power and cost reasons. Unfortunately, measure-
ment tasks may require multiple TCAM counters, and the num-
ber of allocated counters can determine the accuracy of these tasks.
Furthermore, the resources required for accurate measurement may
change with traffic, and tasks may require TCAM counters allo-
cated on multiple switches.

Contributions. In this paper, we discuss the design of a system
for TCAM-based software-defined measurement, called DREAM.
Users of DREAM can dynamically instantiate multiple concurrent
measurement tasks (such as heavy hitter or hierarchical heavy hitter
detection, or change detection) at an SDN controller, and addition-
ally specify a flow filter (e.g., defined over 5-tuples) over which
this measurement task is executed. Since the traffic for each task
may need to be measured at multiple switches, DREAM needs to
allocate switch resources to each task.

To do this, DREAM first leverages two important observations.
First, although tasks become more accurate with more TCAM re-
sources, there is a point of diminishing returns: beyond a certain
accuracy, significantly more resources are necessary to increase the
accuracy of the task. Moreover, beyond this point, the quality of
the retrieved results, say heavy hitters is marginal (as we quantify
later). This suggests that it would be acceptable to maintain the ac-
curacy of measurement tasks above a high (but below 100%) user-
specified accuracy bound. Second, tasks need TCAM resources
only on switches at which there is traffic that matches the speci-
fied flow filter, and the number of resources required depends upon
the traffic volume and the distribution. This suggests that allocat-



ing just enough resources to tasks at switches and over time might
provide spatial and temporal statistical multiplexing benefits.

DREAM uses both of these observations to permit more con-
current tasks than is possible with a static allocation of TCAM
resources. To do this, DREAM needs to estimate the TCAM re-
sources required to achieve the desired accuracy bound. Unfor-
tunately, the relationship between resource and accuracy for mea-
surement tasks cannot be characterized a priori because it depends
upon the traffic characteristics. If this relationship could have been
characterized, an optimization-based approach would have worked.
Instead, DREAM contains a novel resource adaptation strategy for
determining the right set of resources assigned to each task at each
switch. This requires measurement algorithm-specific estimation
of task accuracy, for which we have designed accuracy estima-
tors for several common measurement algorithms. Using these,
DREAM increases the resource allocated to a task at a switch when
its global estimated accuracy is below the accuracy bound and its
accuracy at the switch is also below the accuracy bound. In this
manner, DREAM decouples resource allocation, which is performed
locally, from accuracy estimation, which is performed globally.
DREAM continuously adapts the resources allocated to tasks, since
a task’s accuracy and resource requirements can change with traf-
fic. Finally, if DREAM is unable to get enough resources for a task
to satisfy its accuracy bound, it drops the task.

DREAM is at a novel point in the design space: it permits mul-
tiple concurrent measurements without compromising their accu-
racy, and effectively maximizes resource usage. We demonstrate
through extensive experiments on a DREAM prototype (in which
multiple concurrent tasks three different types are executed) that
it performs significantly better than other alternatives, especially
at the tail of important performance metrics, and that these per-
formance advantages carry over to larger scales evaluated through
simulation. DREAM’s satisfaction metric (the fraction of task’s
lifetime that its accuracy is above the bound) is 2× better at the tail
for moderate loads than an approach which allocates equal share of
resources to tasks: in DREAM, almost 95% of tasks have a satisfac-
tion higher than 80%, but for equal allocation, 5% have a satisfac-
tion less than 40%. At high loads, DREAM’s average satisfaction
is nearly 3× that of equal allocation. Some of these relative per-
formance advantages also apply to an approach which allocates a
fixed amount of resource to each task, but drops tasks that cannot
be satisfied. However, this fixed allocation rejects an unacceptably
high fraction of tasks: even at low load, it rejects 30% of tasks,
while DREAM rejects none. Finally, these performance differences
persist across a broad range of parameter settings.

2. RESOURCE-CONSTRAINED SOFTWARE-
DEFINED MEASUREMENT

In this section, we motivate the fundamental challenges for real-
time visibility into traffic in enterprise and data center networks.
Software-defined Measurement (SDM) provides this capability by
permitting a large amount of dynamically instantiated network-wide
measurement tasks. These tasks often leverage flow-based coun-
ters in TCAM in OpenFlow switches. Unfortunately, the number
of TCAM entries are often limited. To make SDM more practi-
cal, we propose to dynamically allocate measurement resources to
tasks, by leveraging the diminishing returns in the accuracy of each
task, and temporal/spatial resource multiplexing across tasks.

2.1 TCAM-based Measurement
In this paper, we focus on TCAM-based measurement tasks on

hardware switches. Other work has proposed more advanced mea-

Figure 1: TCAM-based task example

surement primitives like sketches [39], which are currently not avail-
able in commercial hardware switches and it is unclear when they
will be available. For this reason, our paper explicitly focuses on
TCAM-based measurement, but many of the techniques proposed
in this paper can be extended to sketch-based measurement (we
leave such extensions to future work). In more constrained environ-
ments like data centers, it may be possible to perform measurement
in software switches or hypervisors (possibly even using sketches),
but this approach (a) can be compromised by malicious code on
end-hosts, even in data-center settings [37, 9], (b) does not gen-
eralize to wide-area deployments of SDN [24], and (c) introduces
additional constraints (like hypervisor CPU usage) [22].

To understand how TCAM memory can be effectively used for
measurement, consider the heavy hitter detection algorithm pro-
posed in [26]. The key idea behind this (and other TCAM-based
algorithms) is, in the absence of enough TCAM entries to moni-
tor every flow in a switch, to selectively monitor prefixes and drill
down on prefixes likely to contain heavy hitters. Figure 1 shows a
prefix trie of two bits as part of source IP prefix trie of a task that
finds heavy hitter source IPs (IPs sending more than, say, 10Mbps
in a measurement epoch). The number inside each node is the vol-
ume of traffic from the corresponding prefix based on the “current”
set of monitored prefixes. The task reports source IPs (leaves) with
volume greater than threshold.

If the task cannot monitor every source IP in the network because
of limited TCAM counters, it only monitors a subset of leaves trad-
ing off some accuracy. It also measures a few internal nodes (IP
prefixes) to guide which leaves to monitor next to maximize accu-
racy. For example in Figure 1, suppose the task is only allowed to
use 3 TCAM counters, it first decides to monitor 11, 10 and 0*.
As prefix 0* sends large traffic, the task decides to drill down un-
der prefix 0* in the next epoch to find heavy hitters hoping that they
will remain active then. However, to respect the resource constraint
(3 TCAM counters), it must free a counter in the other sub-tree by
monitoring prefix 1* instead of 10 and 11.

2.2 Task Diversity and Resource Limitations
While the previous sub-section described a way to measure heavy

hitters at a single switch, the focus of our work is to design an
SDM system that (a) permits multiple types of TCAM-based mea-
surement tasks across multiple switches that may each contend for
TCAM memory, and (b) adapts the resources required for concur-
rent tasks without significantly sacrificing accuracy.

SDM needs to support a large number of concurrent tasks, and
dynamic instantiation of measurement tasks. In an SDN-capable
WAN, network operators may wish to track traffic anomalies (heavy
hitters, significant changes), and simultaneously find large flows to
effect preferential routing [7], and may perform each of these tasks
on different traffic aggregates. Operators may also instantiate tasks
dynamically to drill down into anomalous traffic aggregates. In
an SDN-capable multi-tenant data center, individual tenants might
each wish to instantiate multiple measurement tasks. Modern cloud
services have a large number of tenants; for example, 3 million do-
mains used AWS in 2013 [1]. Per-tenant measurement services
are already available — Amazon CloudWatch provides tenant op-
erators very simple network usage counters per VM [2]. In the fu-
ture, we anticipate tenants instantiating many measurement tasks to



achieve distinct goals such as DDoS detection or better bandwidth
provisioning [10, 38].

Each measurement task may need hundreds of TCAM entries for
sufficient accuracy [31, 26, 41], but typical hardware switches have
only a limited number of TCAMs. There are only 1k-2k TCAM
entries in switches [19, 23], and this number is not expected to in-
crease dramatically for commodity switches because of their cost
and power usage. Moreover, other management tasks such as rout-
ing and access control need TCAMs and this can leave fewer entries
for measurement.

2.3 Dynamic Resource Allocation for SDM
Given limited resources and the need to support concurrent mea-

surement tasks, it is important to efficiently allocate TCAM re-
sources for measurement.

Leverage: Diminishing returns in accuracy for measurement.
The accuracy of a measurement task depends on the resources al-
located to it [31, 39]. For example, for heavy hitter (HH) detection,
recall, the fraction of true HHs that are detected, is a measure of ac-
curacy. Figure 2 shows the result of our HH detection algorithm on
a CAIDA traffic trace [3] with a threshold of 8 Mbps (See Section 5
for implementation details).

The figure shows that more counters leads to higher recall. For
example, doubling counters from 512 to 1024 increases recall from
60% to 80% (Figure 2(a)). There is a point of diminishing re-
turns for many measurement tasks [17, 30, 28, 27] where addi-
tional resource investment does not lead to proportional accuracy
improvement. The accuracy gain becomes smaller as we double
the resources; it only improves from 82% to 92% when doubling
the number of counters from 1024 to 2048, and even 8K counters
are insufficient to achieve an accuracy of 99%. Furthermore, the
precise point of diminishing returns depends on the task type, pa-
rameters (e.g., heavy hitter threshold) and traffic [31].

Another important aspect of the relationship between accuracy
and resource usage of TCAM-based algorithms is that, beyond the
point of diminishing returns, additional resources yield less signif-
icant outcomes, on average. For example, the heavy hitters de-
tected with additional resources are intuitively “less important” or
“smaller” heavy hitters and the changes detected by a change de-
tection algorithm are smaller, by nearly a factor of 2 on average (we
have empirically confirmed this).

This observation is at the core of our approach: we assert that
network operators will be satisfied with operating these measure-
ment tasks at, or slightly above, the point of diminishing returns,
in exchange for being able to concurrently execute more measure-
ment tasks.1 At a high-level, our approach permits operators to
dynamically instantiate three distinct kinds of measurement tasks
(discussed later) and to specify a target accuracy for each task.
It then allocates TCAM counters to these tasks to enable them to
achieve the specified accuracy, adapts TCAM allocations as tasks
leave or enter or as traffic changes. Finally, our approach performs
admission control because the accuracy bound is inelastic and ad-
mitting too many tasks can leave each task with fewer resources
than necessary to achieve the target accuracy.

Leverage: Temporal and Spatial Resource Multiplexing. The
TCAM resources required for a task depends on the properties of
monitored traffic. For example, as the number of heavy hitters in-
creases, we need more resources to detect them. This presents an
opportunity to statistically multiplex TCAM resources across tasks

1Indeed, under resource constraints, less critical measurement tasks might well return
very interesting/important results even well below the point of diminishing returns.
We have left an exploration of this point in the design space to future work.

on a single switch: while a heavy hitter task on a switch may see
many heavy hitters at a given time, a concurrent change detection
task may see fewer anomalies at the same instant, and so may need
fewer resources. This dependence on TCAM resources with traf-
fic is shown in Figure 2(a), where the recall of the HH detection
task with 256 entries decreases in the presence of more HHs and
we need more resources to keep its recall above 50%. If we allo-
cate fixed resources to each task, we would either over-provision
the resource usage and support fewer tasks, or under-provision the
resource usage and obtain low accuracy.

Measurement tasks also permit spatial statistical multiplexing,
since the task may need resources from multiple switches. For ex-
ample, we may need to find heavy hitter source IPs on flows of
a prefix that come from multiple switches. Figure 2(b) shows the
recall of heavy hitters found on two switches monitoring differ-
ent traffic: the recall at each switch is defined by the portion of
detected heavy hitters on this switch over true heavy hitters. The
graph shows that with the same amount of resources, the switches
exhibit different recall; conversely, different amounts of resources
may be needed at different switches.

These leverage points suggest that it may be possible to effi-
ciently use TCAM resources to permit multiple concurrent mea-
surement tasks by (a) permitting operators2 to specify desired accu-
racy bounds for each task, and (b) adapting the resources allocated
to each task in a way that permits temporal and spatial multiplex-
ing. This approach presents two design challenges.

Challenge: Estimating resource usage for a task with a desired
accuracy. Given a task and target accuracy, we need to determine
the resources to allocate to the task. If we knew the dependence
of accuracy on resources, we could solve the resource allocation
problem as an optimization problem subject to resource constraints.
However, it is impossible to characterize the resource-accuracy de-
pendence a priori because it depends on the traffic, the task type, the
measurement algorithms, and the parameters [31]. Furthermore, if
we knew the current accuracy, we could then compare it with the
desired accuracy and increase/decrease the resource usage corre-
spondingly. Unfortunately, it is also impossible to know the cur-
rent accuracy because we may not have the ground truth during
the measurement. For example, when we run a heavy hitter detec-
tion algorithm online, we can only know the heavy hitters that the
algorithm detects (which may have false positives/negatives), but
require offline processing to know the real number of heavy hitters.
To address this challenge, we need to estimate accuracy and then
dynamically increase or decrease resource usage until the desired
accuracy is achieved. For example, to estimate recall (a measure
of accuracy) for heavy hitter detection, we can compute the real
number of heavy hitters by estimating the number of missed heavy
hitters using the collected counters. In Figure 1, for example, the
task cannot miss more than two heavy hitters by monitoring prefix
0* because there are only two leaves under node 0* and its total
volume is less than three times the threshold. In Section 5, we use
similar intuitions to describe accuracy estimators for other mea-
surement tasks.

Challenge: Spatial and Temporal Resource Adaptation. As
traffic changes over time, or as tasks enter and leave, an algorithm
that continually estimates task accuracy and adapts resource allo-
cation to match the desired accuracy (as discussed above) will also
be able to achieve temporal multiplexing. In particular, such an

2Operators may not wish to express and reason about accuracy bounds. Therefore, a
deployed system may have reasonable defaults for accuracy bounds, or allow priorities
instead of accuracy bounds, and translate these priorities to desired accuracy bounds.
We have left an exploration of this to future work.
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Figure 2: Accuracy of HH detection

algorithm will allocate minimal resources to measurement tasks
whose traffic does not exhibit interesting phenomena (e.g., heavy
hitters), freeing up resources for other tasks that may incur large
changes, for example. However, this algorithm alone is not suf-
ficient to achieve spatial multiplexing, since, for a given task, we
may need to allocate different resources on different switches to
achieve a desired global accuracy. For example, a task may wish to
detect heavy hitters within a prefix P, but traffic for that prefix may
be seen on switch A and B. If the volume of prefix P’s traffic on A is
much higher than on B, it may suffice to allocate a large number of
TCAM resources on A, and very few TCAM resources on B. De-
signing an algorithm that adapts network-wide resource allocations
to achieve a desired global accuracy is a challenge, especially in
the presence of traffic shifts between switches. DREAM leverages
both the global estimated accuracy and a measure of accuracy esti-
mated for each switch to decide on which switch a task needs more
resources in order to achieve the desired global accuracy.

3. DREAM OVERVIEW
DREAM enables resource-aware software-defined measurement.

It supports dynamic instantiation of measurement tasks with a spec-
ified accuracy, and automatically adapts TCAM resources allocated
to each task across multiple switches. DREAM can also be ex-
tended to other measurement primitives (like sketches) and tasks
for which it is possible to estimate accuracy.

Architecture and API. DREAM implements a collection of al-
gorithms (defined later) running on an SDN controller. Users of
DREAM submit measurement tasks to the system. DREAM period-
ically reports measurement results to users, who can use these re-
sults to reconfigure the network, install attack defenses, or increase
network capacity. A DREAM user can be a network operator, or a
software component that instantiates tasks and interprets results.

Our current implementation supports three types of measurement
tasks, each with multiple parameters:
Heavy Hitter (HH) A heavy hitter is a traffic aggregate identified

by a packet header field that exceeds a specified volume. For
example, heavy hitter detection on source IP finds source IPs
contributing large traffic in the network.

Hierarchical Heavy Hitter (HHH) Some fields in the packet hea-
der (such as the source/destination IP addresses) embed hier-
archy, and many applications such as DDoS detection require
aggregates computed at various levels within a hierarchy [33].
Hierarchical heavy hitter (HHH) detection is an extension of
HH detection that finds longest prefixes that exceed a certain
threshold even after excluding any HHH descendants in the pre-
fix trie [15].

Change Detection (CD) Traffic anomalies such as attacks often
correlate with significant changes in some aspect of a traffic ag-
gregate (e.g., volume or number of connections). For example,
large changes in traffic volume from source IPs have been used
for anomaly detection [41].

Figure 3: DREAM System Overview

Each of these tasks takes four parameters: a flow filter specifying
the traffic aggregate to consider for the corresponding phenomenon
(HH, HHH or CD); a packet header field on which the phenomenon
is defined (e.g., source IP address); a threshold specifying the mini-
mum volume constituting a HH or HHH or CD; and a user-specified
accuracy bound (usually expressed as a fraction). For example, if
a user specifies, for a HH task a flow filter < 10/8,12/8,∗,∗,∗ >,
source IP as the packet header field, a threshold of 10Mb and an
accuracy of 80%, DREAM measures, with an accuracy higher than
80%, heavy hitters in the source IP field on traffic from 10/8 to 12/8,
where the heavy hitter is defined as any source IP sending more
than 10Mb traffic in a measurement epoch. The user does not spec-
ify the switch to execute the measurement task; multiple switches
may see traffic matching a task’s flow filter, and it is DREAM’s
responsibility to install measurement rules at all relevant switches.

Workflow. Figure 3 shows the DREAM workflow, illustrating both
the interface to DREAM and the salient aspects of its internal opera-
tion. A user instantiates a task and specifies its parameters (step 1).
Then, DREAM decides to accept or reject the task based on avail-
able resources (step 2). For each accepted task, DREAM initially
configures a default number of counters at one or more switches
(step 3). DREAM also creates a task object for each accepted task:
this object encapsulates the resource allocation algorithms run by
DREAM for each task.

Periodically, DREAM retrieves counters from switches and passes
these to task objects (step 4). Task objects compute measurement
results and report the results to users (step 5). In addition, each
task object contains an accuracy estimator that measures current
task accuracy (step 6). This estimate serves as input to the resource
allocator component of DREAM, which determines the number of
TCAM counters to allocate to each task and conveys this number to
the corresponding task object (step 7). The task object determines
how to use the allocated counters to measure traffic, and may re-
configure one or more switches (step 3). If a task is dropped for
lack of resources, DREAM removes its task object and de-allocates
the task’s TCAM counters.

DREAM Generality. These network-wide measurement tasks
have many applications in data centers and ISP networks. For
example, they are used for multi-path routing [7], optical switch-
ing [12], network provisioning [21], threshold-based accounting [20],
anomaly detection [42, 41, 26] and DDoS detection [33].

Furthermore, DREAM can be extended to more general measure-
ment primitives beyond TCAMs. Our tasks are limited by TCAM
capabilities because TCAM counters can only measure traffic vol-
umes for specific prefixes. Moreover, TCAM-based tasks need a
few epochs to drill down to the exact result. However, DREAM’s



key ideas — using accuracy estimators to allocate resources, and
spatially multiplexing resource allocation — can be extended to
other measurement primitives not currently available on commod-
ity hardware, such as sketches. Sketches do not require controller
involvement to detect events and can cover a wider range of mea-
surement tasks than TCAMs (volume and connection-based tasks
such as Super-Spreader detection) [39]. We can augment DREAM
to use sketches, since sketch accuracy depends on traffic properties
and it is possible to estimate this accuracy [17]. We leave discus-
sion of these extensions to future work.

There are two main challenges in DREAM, discussed in subse-
quent sections: the design of the resource allocator, and the design
of task-specific accuracy estimators.

4. DYNAMIC RESOURCE ALLOCATION
DREAM allocates TCAM resources to measurement tasks on

multiple switches. Let ri,s(t) denote the amount of TCAM re-
sources allocated to the i-th task on switch s at time t. Each task is
also associated with an instantaneous global accuracy gi(t). Recall
that the accuracy of a task is a function of the task type, parame-
ters, the number of its counters per switch and the traffic matching
its flow filter on each switch.

DREAM allocates TCAM resources to maintain high average
task satisfaction, which is the fraction of time where a task’s ac-
curacy gi(t) is greater than the operator specified bound. More im-
portant, at each switch, DREAM must respect switch capacity: the
sum of ri,s(t) for all i must be less than the total TCAM resources
at switch s, for all t.

To do this, DREAM needs a resource allocation algorithm to al-
locate counters to each task (i.e., the algorithm determines ri,s(t)).
DREAM also needs an admission control algorithm; since the accu-
racy bound is inelastic (Section 2), admitting tasks indiscriminately
can eventually lead to zero satisfaction as no task receives enough
resources to achieve an accuracy above the specified bound.

Strawman approaches. One approach to resource allocation is to
apply a convex optimization periodically, maximizing the number
of satisfied tasks by allocating ri,s(t) subject to switch TCAM con-
straints. This optimization technique requires a characterization
of the resource-accuracy curve, a function that maps target accu-
racy to TCAM resources needed. The same is true for an optimiza-
tion technique like simulated annealing which requires the ability
to predict the “goodness” of a neighboring state. As discussed in
Section 2.3, however, it is hard to characterize this curve a priori,
because it depends upon traffic characteristics, and the type of task.

An alternative approach is to perform this optimization itera-
tively: jointly (for all tasks across all switches) optimize the in-
crease or decrease of TCAM resources, measure the resulting ac-
curacy, and repeat until all tasks are satisfied. However, this joint
optimization is hard to scale to large numbers of switches and tasks
because the combinatorics of the problem is a function of product
of the number of switches and the number of tasks.

If the total resource required for all tasks exceeds system capac-
ity, the first approach may result in an infeasible optimization, and
the second may not converge. These approaches may then need
to drop tasks after having admitted them, and in these algorithms
admission control is tightly coupled with resource allocation.

Solution Overview. DREAM adopts a simpler design, based on two
key ideas. First, compared to our strawman approaches, it loosely
decouples resource allocation from admission control. In most
cases, DREAM can reject new tasks by carefully estimating spare
TCAM capacity, and admitting a task only if sufficient spare capac-
ity (or headroom) exists. This headroom accommodates variabil-

ity in aggregate resource demands due to traffic changes. Second,
DREAM decouples the decision of when to adapt a task’s resources
from how to perform the adaptation. Resource allocation decisions
are made when a task’s accuracy is below its target accuracy bound.
The task accuracy computation uses global information. How-
ever, in DREAM, a per-switch resource allocator maps TCAM re-
sources to tasks on each switch, which increases/decreases TCAM
resources locally at each switch step-wise until the overall task ac-
curacy converges to the desired target accuracy. This decoupling
avoids the need to solve a joint optimization for resource alloca-
tion, leading to better scaling.

Below, we discuss three components of DREAM’s TCAM re-
source management algorithm: the task accuracy computation, the
per-switch resource allocator, and the headroom estimator. We ob-
serve that these components are generic and do not depend on the
types of tasks (HH, HHH, or CD) that the system supports.

Task Accuracy Computation. As discussed above, DREAM allo-
cates additional resources to a task if its current accuracy is below
the desired accuracy bound. However, because DREAM tasks can
see traffic on multiple switches, it is unclear what measure of accu-
racy to use to make this decision per switch. There are two possible
measures: global accuracy and local accuracy on each switch. For
example, if a HH task has 20 HHs on switch A and 10 HHs on
switch B, and we detect 5 and 9 true HHs on each switch respec-
tively, the global accuracy will be 47% and the local accuracy will
be 25% for A and 90% for B.

Let gi be the global accuracy for task i, and li,s be its local ac-
curacy at switch s. Simply using gi to make allocation decisions
can be misleading: at switch s, li,s may already be above the accu-
racy bound, so it may be expensive to add additional resources to
task i at switch s. This is because many measurement tasks reach a
point of diminishing returns in accuracy as a function of assigned
resources. In the above example, we do not want to increase re-
sources on switch B when the accuracy bound is 80%. Conversely,
li,s may be low, but adding measurement resources to i at switch s
may be unnecessary if gi is already above the accuracy bound. For
the above example, we do not want to increase resources on switch
A when the accuracy bound is 40%.

This discussion motivates the use of an overall accuracy ai,s =
max(gi, li,s) to decide when to make resource allocation decisions.
Of course, this quantity may itself fluctuate because of traffic chang-
es and estimation error. To minimize oscillations due to such fluc-
tuations, we smooth the overall accuracy using an EWMA filter.
In what follows, we use the term overall accuracy to refer to this
smoothed value. The overall accuracy for a task is calculated by its
task object in Figure 3.

The Per-switch Resource Allocator. The heart of DREAM is the
per-switch resource allocator (Figure 3), which runs on the con-
troller and maps TCAM counters to tasks for each switch.3 It uses
the overall accuracy ai,s(t) to redistribute resources from rich tasks
(whose overall accuracy are above the accuracy bound) to poor
tasks (whose overall accuracy is below the accuracy bound) to en-
sure all tasks are above the accuracy bound. DREAM makes alloca-
tion decisions at the granularity of multiple measurement epochs,
an allocation epoch. This allows DREAM to observe the effects of
its allocation decisions before making new allocations.

Ensuring Fast Convergence with Adaptive Step Sizes: The alloca-
tor does not a priori know the number of necessary TCAM counters
for a task to achieve its target accuracy (we call this the resource

3In practice, an operator might reserve a fixed number of TCAM counters for im-
portant measurement tasks, leaving only a pool of dynamically allocable counters.
DREAM operates on this pool.



target, denoted by Ri,s). The resource target for each task may also
change over time with changing traffic. The key challenge is to
quickly converge to Ri,s(t); the longer ri,s(t) is below the target,
the less the task’s satisfaction.

Because Ri,s is unknown and time-varying, at each allocation
epoch, the allocator iteratively increases or decreases ri,s(t) in steps
based on the overall accuracy (calculated in the previous epoch) to
reach the right amount of resources. The size of the step determines
the convergence time of the algorithm and its stability. If the step is
too small, it can take a long time to move resources from a rich task
to a poor one; on the other hand, larger allocation step sizes enable
faster convergence, but can induce oscillations. For example, if a
satisfied task needs 8 TCAMs on a switch and has 10, removing 8
TCAMs can easily drop its accuracy to zero. Intuitively, for stabil-
ity, DREAM should use larger step sizes when the task is far away
from Ri,s(t), and smaller step sizes when it is close.

Since Ri,s is unknown, DREAM estimates it by determining when
a task changes its status (from poor to rich or from rich to poor) as
a result of a resource change. Concretely, DREAM’s resource al-
location algorithm works as follows. At each measurement epoch,
DREAM computes the sum of the step sizes of all the poor tasks sP,
and the sum of the step sizes of all the rich tasks sR.4 If sP ≤ sR,
then each rich task’s ri,s is reduced by its step size, and each poor
task’s ri,s is increased in proportion to its step size (i.e., sR is dis-
tributed proportionally to the step size of each poor task). The con-
verse happens when sP > sR. If we increase or decrease ri,s during
one allocation epoch, and this does not change the task’s rich/poor
status in the next epoch, then, we increase the step size to enable
the task to converge faster to its desired accuracy. However, if the
status of task changes as a result of a resource change, we return
TCAM resources (but use a smaller step size) to converge to Ri,s.

Figure 4 illustrates the convergence time to Ri,s(t) for different
increase/decrease policies for the step size. Here, multiplicative
(M) policies change step size by a factor of 2, and additive (A)
policies change step size by 4 TCAM counters every epoch. We
ran this experiment with other values and the results for those val-
ues are qualitatively similar. Additive increase in AM and AA has
slow convergence when Ri,s(t) changes since it takes a long time
to increase the step size. Although MA reaches the goal fast, it
takes long for it to decrease the step size and converge to the goal.
Therefore, we use multiplicative increase and decrease (MM) for
changing the step size; we have also experimentally verified its su-
perior performance.

As an aside, note that our problem is subtly different from fair
bandwidth allocation (e.g., as in TCP). In our setting, different
tasks can have different Ri,s, and the goal is to keep their allocated
resources, ri,s, above Ri,s for more tasks, but fairness is a non-goal.
By contrast, TCP attempts to converge to a target fair rate that de-
pends upon the bottleneck bandwidth. Therefore, some of the intu-
itions about TCP’s control laws do not apply in our setting. In the
language of TCP, our approach is closest to AIAD, since our step
size is independent of ri,s. In contrast to AIAD, we use large steps
when ri,s is far from Ri,s for fast convergence, and we use small step
sizes otherwise for saving resources by making ri,s close to Ri,s.

Spare TCAM capacity, or headroom. Since Ri,s can change over
time because of traffic changes, running the system close to the ca-
pacity can result in low task satisfaction. Therefore, DREAM main-
tains headroom of TCAM counters (5% of the total TCAM capacity
in our implementation), and immediately rejects a new task if the

4 In our implementation, a task is considered rich only if ai,s > A+ δ , where A is
the target accuracy bound. The δ is a hysteresis threshold that prevents a task from
frequently oscillating between rich and poor states.
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Figure 4: Comparing step updates algorithms

headroom is below a target value on any switch for the task. This
permits the system to absorb fluctuations in total resource usage,
while ensuring high task satisfaction.

However, because it is impossible to predict traffic variability,
DREAM may infrequently drop tasks when headroom is insuffi-
cient.5 In our current design, operators can specify a drop priority
for tasks. DREAM lets the poor tasks with low drop priority (i.e.,
those that should be dropped last) steal resources from those tasks
with high drop priority (i.e., those that can be dropped first). When
tasks with high drop priority get fewer and fewer resources on some
switches, and remain poor for several consecutive epochs, DREAM
drops them, to ensure that they release resources on all switches.

DREAM does not literally maintain a pool of unused TCAM
counters as headroom. Rather, it always allocates enough TCAM
counters to all tasks to maximize accuracy in the presence of traffic
changes, but then calculates effective headroom when a new task
arrives. One estimate of effective headroom is sR− sP (the sum of
the step sizes of the rich tasks minus that of the poor tasks). How-
ever, this can under-estimate headroom: a rich task may have more
resources than it needs, but its step size may have converged to a
small value and may not accurately reflect how many resources it
can give up while still maintaining accuracy. Hence, DREAM intro-
duces a phantom task on each switch whose resource requirement
is equal to the headroom. Rich tasks are forced to give up resources
to this phantom task, but, when a task becomes poor due to traffic
changes, it can steal resources from this phantom task (this is possi-
ble because the phantom task is assigned the lowest drop priority).
In this case, if rph is the phantom task’s resources, the effective
headroom is rph + sR− sP, and DREAM uses this to determine if
the new task should be admitted.

5. TASK OBJECTS AND ACCURACY ES-
TIMATION

In DREAM, task objects implement individual task instances.
We begin by describing a generic algorithm that captures task ob-
ject functionality. An important component of this algorithm is a
task-independent iterative algorithm for configuring TCAM coun-
ters across multiple switches. This algorithm leverages TCAM
properties, and does not depend upon details of each task type (i.e.,
HH, HHH or CD). We conclude the section with a discussion of
the task-dependent components of the generic algorithm, such as
the accuracy estimator.

This deliberate separation of functionality between generic, task-
independent, and task dependent parts enables easier evolution of
DREAM. To introduce a new task type, it suffices to design new
algorithms for the task-dependent portion, of which the most com-
plicated is the accuracy estimator.

5 Here, we assume that perimeter defenses are employed (e.g., as in data centers),
so malicious traffic cannot trigger task drops. In future work, we plan to explore
robustness to attack traffic.



Algorithm 1: DREAM task object implementation

1 foreach measurement iteration do
2 counters=fetchCounters(switches);
3 report = createReport(counters);
4 (global, locals) = t.estimateAccuracy(report, counters);
5 allocations = allocator.getAllocations(global, locals);
6 counters = configureCounters(counters, allocations);
7 saveCounters(counters,switches);
8 end

5.1 A Generic Algorithm for Task Objects
A DREAM task object implements Algorithm 1; each task object

runs on the SDN controller. This algorithm description is generic
and serves as a design pattern for any task object independent of the
specific functionality it might implement (e.g., HH, HHH or CD).

Each newly admitted task is initially allocated one counter to
monitor the prefix defined by the task’s flow filter (Section 3). Task
object structure is simple: at each measurement interval, a task
object performs six steps. It fetches counters from switches (line
2), creates the report of task (line 3) and estimates its accuracy (line
4). Then, it invokes the per-switch allocator (line 5, Section 4) and
allows the task to update its counters to match allocations and to
improve its accuracy (line 6). Finally, the task object installs the
new counters (line 7).

Of these six steps, one of them configureCounters() can
be made task-independent. This step relies on the capabilities of
TCAMs alone and not on details of how these counters are used to
measure HHs, HHHs or significant changes. Two other steps are
task-dependent: createReport, and estimateAccuracy.

5.2 Configuring Counters for TCAMs
Overview. After the resource allocator assigns TCAM counters to
each task object on each switch, the tasks must decide how to con-
figure those counters, namely which traffic aggregates to monitor
on which switch using those counters (configureCounters() in
Algorithm 1). A measurement task cannot monitor every flow in
the network because, in general, it will not have enough TCAM
counters allocated to it. Instead, it can measure traffic aggregates,
trading off some accuracy. For example, TCAM-based measure-
ment tasks can count traffic matching a traffic aggregate expressed
as a wild-card rule (e.g., traffic matching an IP prefix).

The challenge then becomes choosing the right set of prefixes
to monitor for a sufficiently accurate measurement while bounding
resource usage. A task-independent iterative approach works as
follows. It starts by measuring an initial set of prefixes in the prefix
trie for the packet header field (source or destination IP) that is an
input parameter to our tasks. Figure 5 shows an example prefix trie
for four bits.

Then, if the count on one of the monitored prefixes is “interest-
ing” from the perspective of the specific task (e.g., it reveals the
possibility of heavy hitters within the prefix), it divides that pre-
fix to monitor its children and use more counters. Conversely, if
some prefixes are “uninteresting”, it merges them to free counters
for more useful measurements.

While this approach is task-independent, it depends upon a task-
dependent component: a prefix score that estimates how “interest-
ing” the prefix is for the specific task. Finally, DREAM can only
measure network phenomena that last long enough for this iterative
approach to complete (usually, on the order of several seconds).

Divide-and-Merge. Algorithm 2 describes this divide-and-merge
algorithm in detail. The input to this algorithm includes (a) the cur-
rent configuration of counters allocated to the task and (b) the new
resource allocation. The output of this algorithm is a new configu-

Figure 5: A prefix trie of source IPs where the number on each node
shows the bandwidth used by the associated IP prefix in Mb in an

epoch. With threshold 10, the nodes in double circles are heavy hitters
and the nodes with shaded background are hierarchical heavy hitters.

ration describing the prefixes to be monitored in the next measure-
ment interval.

In the first step, the algorithm invokes a task-dependent function
that returns the score associated with each prefix currently being
monitored by the task object (line 1). We describe prefix scoring
later in this section, but scores are non-negative, and the cost of
merging a set of prefixes is the sum of their score. Now, if the
new TCAM counter allocation at some switches is lower than the
current allocation (we say that these switches are overloaded), the
algorithm needs to find prefixes to merge. It iteratively finds a set
of prefixes with minimum cost that can be merged into their ances-
tors, thereby freeing entries on overloaded switches (lines 2-4). We
describe how to find such candidate prefixes (cover() function)
below. After merging, the score of the new counter will be the total
score of merged counters.

Next, the algorithm iteratively divides and merges (lines 5-16).
First, it picks the counter with maximum score to divide (line 6) and
determines if that results in overloaded switches, designated by the
set F (line 7). If F is empty, for example, because the resource
allocator increased the allocation on all switches, no merge is nec-
essary, so the merge cost is zero. Otherwise, we use the cover()

function to find the counters to merge (line 10). Next, if the score
of the counter is worth the cost, we apply divide and merge (lines
12-15). After dividing, the score of children will be half of the
parent’s score [42]. The algorithm loops over all counters until no
other counter is worth dividing.

A similar algorithm has been used for individual measurement
tasks (e.g., HH [26], HHH [31], and traffic changes [41]). In this
paper, we provide a general task-independent algorithm, ensuring
that the algorithm uses bounded resources and adapting to resource
changes on multiple switches.

Algorithm 2: Divide and Merge

1 computeScores(counters);
2 while F = {over-allocated switches} 6= Φ do
3 merge(cover(F , counters, allocations));
4 end
5 repeat
6 m = maxIndex(counters.score);
7 F = toFree(m, allocations);
8 solution.cost=0;
9 if F 6= Φ then

10 solution=cover(F , counters, allocations);
11 end
12 if solution.cost<m.score then
13 divide(m);
14 merge(solution);
15 end
16 until no counter to divide;



On multiple switches. We now explain how divide-and-merge
works across multiple switches. We consider tasks that measure
phenomena on a single packet header field, and we leave to future
work extensions to multiple fields. For ease of exposition, we de-
scribe our approach assuming that the user specifies the source IP
field for a given task. We also assume that we know the ingress
switches for each prefix that a task wishes to monitor; then to mon-
itor the prefix, the task must install a counter on all of its ingress
switches and later sum the resulting volumes at the controller.

Dividing a prefix may need an additional entry on multiple switch-
es. Formally, if two sibling nodes in the prefix trie, A and B, have
traffic on switch sets SA and SB, monitoring A and B needs one entry
on each switch in SA and one on each switch in SB, but monitoring
the parent P needs one entry on SP = SA∪SB switches. Therefore,
merging A and B and monitoring the parent prefix frees one entry
on SA ∩ SB. Conversely, dividing the parent prefix needs one ad-
ditional entry on switches in SA ∩ SB. For example, suppose that
S0000 = {1,2} and S0001 = {2,3} in Figure 5 where set elements
are switch ids. Merging S0000 and S0001 saves an entry on 2.

The challenge is that we may need to merge more than two sib-
ling prefixes to their ancestor prefix to free an entry in a switch. For
example, suppose that S0010 = {3,4} and S0011 = {4,1}. To free
an entry on switch 3, we must merge S0001 and S0010. Therefore,
we merge all four counters to their common ancestor 00∗∗. 6

To generalize, suppose that for each internal node j in the prefix
trie (ancestor of counters), we know that merging all its descendant
counters would free entries on a set of switches, say Tj. Further-
more, let the cost for node j be the sum of the scores of the descen-
dant monitored prefixes of j. The function cover() picks those
Tj sets that cover the set of switches requiring additional entries,
F , with minimum total cost. There are fast greedy approximation
algorithms for Minimum Subset Cover [36].

Finally, we describe how to compute Tj for each internal node.
For each node j, we keep two sets of switches, S j and Tj. S j con-
tains the switches that have traffic on j and is simply S jle f t ∪ S jright

when j has two children jle f t , jright . Tj contains the switches that
will free at least one entry if we merge all its descendant counters to
j. Defining it recursively, Tj includes Tjle f t and Tjright , and contains
(by the reasoning described above) the common entries between the
switches having traffic on the left and right children, S jle f t ∩ S jright .
Tj is empty for prefixes currently being monitored.

5.3 Task-Dependent Algorithms
Beyond these task-independent algorithms, each task object im-

plements three task-dependent algorithms. We present the task-
dependent algorithms for HH, HHH, and CD tasks. A key task-
dependent component is accuracy estimation, and we consider two
task accuracy metrics: precision, the fraction of retrieved items that
are true positives; and recall, the fraction of true positives that are
retrieved. For these definitions, an item refers to a HH, HHH or
change detection. Depending on the type of measurement task,
DREAM estimates one of these accuracy measures to determine
TCAM resource allocation.

The task-dependent algorithms for these tasks are summarized in
Table 1, but we discuss some of the non-trivial algorithms below.

Heavy hitters: A heavy hitter is a traffic aggregate that exceeds a
specified volume. For example, we can define heavy hitters as the
source IPs whose traffic exceeds a threshold θ over a measurement
epoch. Figure 5 shows an example of bandwidth usage for each IP
prefix during an epoch. With a threshold of θ = 10Mb, there are a

6 Although we could just merge those two to 00∗∗, this creates overlapping counters
that makes the algorithm more complex and adds delay in saving rules at switches.

Task Create report Estimate accuracy Score

HH Report exact counters with
volume > θ

Estimate recall by estimat-
ing missed HHs

volume
#wildcards+1

HHH

Traverse prefix trie bottom-
up and report a prefix h
if volumeh − ∑i volumei > θ

where i is a descendant de-
tected HHH of h [15]

Estimate precision by
finding if a detected HHH
is a true one

volume

CD Report exact counters with
|volume−mean|> θ

Estimate recall by estimat-
ing missed changes

|volume−mean|
#wildcards+1

Table 1: Task dependent methods

total of two leaf heavy-hitters shown in double circles. Our divide-
and-merge approach iteratively drills-down to these two leaves.

Accuracy Estimation: For our TCAM-based algorithm, all de-
tected HHs are true, which means the precision is always one in this
algorithm. For this reason, we use recall as a measure of accuracy
for HH detection. Doing so requires an estimate of the number of
true HHs the algorithm misses. We use the smaller of the following
two bounds to estimate the missed heavy hitters under a non-exact
prefix. First, a prefix with b wildcard bits cannot miss more than
2b heavy hitters. For example, prefix 0∗∗∗ in Figure 5 has 8 heavy
hitters at most. Second, if the volume of the prefix is v, there can
only be b v

θ
c missed heavy hitters. This bound for prefix 0∗∗∗ will

be 4.
Finally, we need to estimate both local and global recall (Sec-

tion 4). We compute the local recall for a switch based on detected
HHs, and we estimate missed HHs from prefixes that have traffic
on the switch. However, there are cases where only a subset of
switches are bottlenecked (i.e., they have used all available coun-
ters, so it is not possible to further divide prefixes). In this case, we
only consider missed HHs on these switches.

Hierarchical heavy hitters: A variant of heavy hitters, called Hi-
erarchical Heavy Hitters (HHHs) [15] is useful for anomaly detec-
tion [42] and DDoS detection [33]. A HHH is (recursively) defined
by the longest IP prefixes that contribute traffic exceeding a thresh-
old θ of total traffic, after excluding any HHH descendants in the
prefix trie. For example in Figure 5, prefix 010* is a HHH as IPs
0100 and 0101 collectively have large traffic, but prefix 01** is not
a HHH because excluding descendent HHHs (010* and 0111), its
traffic is less than the threshold.

Accuracy Estimation: For HHHs, our algorithm estimates preci-
sion by determining whether a detected HHH is a true positive or a
false positive. Our algorithm assigns a precision value to each de-
tected HHH: the value is either 0 if it is a false positive, 1 if a true
positive, or fractional if there is ambiguity in the determination, as
discussed below. The overall accuracy estimate is an average of
these values. The method for making these value assessments is
different for HHHs without and with detected descendant HHHs.

If a detected HHH h has no detected descendant HHHs (e.g.,
0000, 010*, 0111 in Figure 5), it is a false positive HHH if it has
been detected instead of one of its descendants. So, for it to be a
true positive HHH, we need to ensure that none of its descendants
could have been a HHH. There are three cases. (1) h is an exact IP.
(2) We monitored the descendants of h and their volume is below
the threshold θ . For example, if we monitor 0100 and 0101, we
can confirm that the detected HHH 010* is a true one. In these two
cases, it is easy to tell h is a true HHH. (3) We only monitored h
and do not know about its descendants. If h has a count larger than
2θ , then h cannot be a true HHH, because the volume of at least
one of its children must be above θ . If the volume is smaller than
2θ , either the detected prefix or one of its sub-prefixes is HHH, so
we set its precision value to 0.5.

For an HHH h with detected descendant HHHs, the error in the
detected descendant HHHs can make h a false HHH. For example



in Figure 5, suppose that we report 0000, 010* and 011* as HHHs.
Now, the volume for 0*** excluding descendant HHHs will be 8
because of false detection of 011*. Therefore, instead of 0***, we
detect **** as HHH. In this scenario, we have over-approximated
the traffic from descendant HHHs of ****. In the worst case, the
over-approximated traffic has been excluded from a child of the de-
tected HHH. Thus, for each child prefix, we find if adding up these
over-approximations could make them a HHH. If any child with a
new volume becomes HHH, the parent cannot be, so as a heuristic,
we halve the precision weight of h. The over-approximation for
a HHH confirmed to be true is 0, and the over-approximation for
other HHHs can be at most volume−θ .

The global precision is the average precision value of detected
HHHs. To compute the local precision per switch, we compute
the average precision value of HHH prefixes from each switch. If
a HHH has traffic from multiple switches, we give the computed
precision value only to bottleneck switches, and precision 1 to other
switches.

For HHH tasks, recall can be calculated similar to HH tasks. We
have experimentally found that, for HHH, recall is correlated with
precision.

Change detection: A simple way to define the traffic change of a
prefix is to check if the difference between its current volume and
a moving average of its volume exceeds a specified threshold. In
this sense, change detection is similar to HH detection: a change is
significant if |volume−mean| > θ . Thus, for change detection,
reporting, prefix scoring, and accuracy estimation are similar to
those for HH tasks (Table 1): wherever volume is used in HH tasks,
|volume−mean| is used for CD.

6. EVALUATION
We have implemented a complete prototype of DREAM, and use

this to evaluate our approach and compare it with alternatives. We
then use simulations to explore the performance of DREAM on
larger networks, and also study its parameter sensitivity.

6.1 Evaluation Methodology
DREAM Implementation: We have implemented the DREAM
resource allocator and the task objects in Java on the Floodlight
controller [4]. Our implementation interfaces both with hardware
OpenFlow switches, and with Open vSwitch [5]. We have also im-
plemented alternative resource allocation strategies, described be-
low. Our total implementation is nearly 20,000 lines of code.

DREAM Parameter Settings: We use a one second measurement
interval and a two second allocation interval. We set the headroom
to 5% of the switch capacity and drop tasks if their global accuracy
is below the bound for 6 consecutive allocation iterations. The sen-
sitivity of DREAM to these parameters is explored in Section 6.4.

Tasks: Our workload consists of the three types of tasks, HH,
HHH and CD, both individually and in combination. We choose
80% as the default accuracy bound for all tasks since we have
empirically observed that to be the point of diminishing returns
for many tasks, but also explore DREAM’s performance for other
choices of accuracy bounds. We smooth the local and global ac-
curacies using EWMA with history weight of α = 0.4. The flow
filters for the tasks are chosen randomly from prefixes with 12 wild-
card bits to fit all our tasks. The default threshold for the above
tasks is 8Mb, and for change detection we also use the history
weight of α = 0.8. Our default drop priority is to drop the most
recent task first.

By controlling the mapping of prefixes to switches, we create
different scenarios of tasks on switches. For example, a tenant can
own a subnet of /12, and its virtual machines in this subnet can be
located on different switches. If we assign multiple /10 prefixes to
switches (i.e., each switch sees traffic from many tenants), each task
will have traffic from one switch. However, if we assign /15 pre-
fixes to switches (i.e., one tenant sends traffic from many switches),
each task monitors traffic from 8 switches at most.

Tasks run for an average of 5 minutes. For evaluations on our
prototype, 256 tasks having traffic from 8 switches arrive based on a
Poisson process during 20 minutes. For the large-scale simulation,
4096 tasks having traffic from 8 out of 32 switches arrive during
80 minutes. We note that these are fairly adversarial settings for
task dynamics, and are designed to stress test DREAM and other
alternatives.

Finally, we use a 5-hour CAIDA packet trace [3] from a 10Gbps
link with an average 2Gbps load. We divide it into 5-min chunks,
each of which contains 16 /4 prefixes, of which only prefixes with
>1% total traffic are used. Each task randomly picks a /4 prefix
which is mapped to its /12 filter

Evaluation metrics: We evaluate DREAM and other alternatives
using three metrics. The satisfaction of a task is the percentage of
time a task has an accuracy above the bound when the task was
active. In results from our prototype, we use estimated accuracy
because delays in installing TCAM counters in the actual experi-
ment make it difficult for us to assess the ground-truth in the traffic
seen by a switch. We have found in our evaluations that the esti-
mated accuracy consistently under-estimates the real accuracy by
5-10% on average, so our prototype results are a conservative esti-
mate of the actual satisfaction that tasks would see in practice. In
our simulation results, we use the real accuracy.

We show both the average and 5th percentile for this metric over
all tasks. The latter metric captures the tail behavior of resource
allocation: a 5-th percentile of 20 means that 95% of tasks had an
accuracy above the bound for 20% of their lifetime. The drop and
rejection ratios measure the percentage of tasks that are dropped
and rejected, respectively. While the rejection ratios can be a func-
tion of the workload and can be high in highly overloaded condi-
tions, we expect drop ratios to be small for a viable scheme (i.e., it
is desirable that a task, once admitted, is not dropped, but may be
rejected before admission).

Alternative Strategies: One alternative we explore is to reserve a
Fixed fraction of counters on each switch for a task, and reject tasks
for which this fixed allocation cannot be made. While we evaluated
fixed allocation with different fractions, here we only show the re-
sults for the scenario that allocates 1

32 of the resources on a switch
per task. Larger allocations result in higher satisfaction for fewer
tasks and a higher rejection ratio, and smaller fixed allocations ac-
cept more tasks at the expense of lower satisfaction. A more com-
plex algorithm is to give Equal amounts of resources to each task.
When a task joins, it gets an equal share of counters as other tasks
on the switches it has traffic from. The allocations are also updated
when a task leaves, and Equal does not reject tasks.

Experimental setup: We replay the CAIDA traffic on 8 switches.
We attempted to evaluate DREAM on a modern hardware switch
(the Pica8 3290 [6]) but its delay for rule installation is unaccept-
ably high: 256 rules take 1 second, and 512 rules take 10 seconds.
We believe better engineering will result in improved installation
times in the future; indeed, for applications with tight control loops
like ours, it is essential to improve installation times in hardware
switches. Our evaluations are conducted on software switches [5]
that can delete and save 512 rules in less than 20ms. We also reduce



control loop delay by using incremental update of TCAM counters
and associated rules, updating at each epoch only the rules that have
changed from the previous epoch. We show below that this strategy
results in acceptable rule installation performance (Section 6.5). In
our experiments, the DREAM prototype runs on a Floodlight con-
troller [4] on a quad core 2.4 Ghz Xeon processor connected to the
switches through a 1Gbps shared link with ping delay of 0.25ms.

6.2 Results from Prototype
Figure 6 shows, for different switch capacities, the 5th percentile

and mean satisfaction of tasks for HHH, HH, and CD separately,
as well as a combined workload that runs a mixture of these tasks.
The mean value is the upper end of each vertical bar, and the 5th

percentile is the lower end. These figures demonstrate DREAM’s
superior performance compared to the alternatives, both in terms of
the mean and the 5th percentile.

Large capacity switches. For large switches, DREAM can keep
almost all tasks satisfied by temporally and spatially multiplexing
TCAM resources without rejecting or dropping any task (Figure 7).
For example, Figure 6(b) shows that 95% of tasks were satisfied
for more than 94% of their lifetime. By contrast, a high mean and
a dramatically lower 5th percentile (about 40%, or nearly 2× less
than DREAM) for Equal indicate that this scheme has undesirable
tail behavior: it keeps tasks that require fewer resources satisfied,
but leaves large tasks unsatisfied. This is undesirable in general:
larger tasks are where the action happens, in a manner of speaking,
and cannot be left dissatisfied. The Fixed approach achieves high
average satisfaction, but has two drawbacks: poor tail performance,
and a high rejection ratio of about 30%.

Highly resource-constrained switches. For smaller switches, where
our workload overloads the resources on switches, DREAM lever-
ages rejection to limit the load and keep active tasks satisfied by
multiplexing resources. For example, in Figure 6(a) for a switch
with 512 counters, DREAM rejects about 50% of tasks, but can
keep 95% of tasks satisfied for more than 70% of their lifetime. By
contrast, in this setting, Equal performs pathologically worse: its
average satisfaction is 20% and 5% of tasks under Equal get nearly
zero satisfaction. This is because Equal does not perform admis-
sion control and it under-provisions resources in small switches and
thus gets low satisfaction. We emphasize that this is an adversarial
workload and represents a high degree of overload: DREAM has to
reject nearly 50% of the tasks, and drop about 10% in order to sat-
isfy the remaining tasks. Also, DREAM’s mean and 5th percentile
satisfaction is a little lower than for the larger switch capacity case,
mostly because the adaptation required to fit tasks into the smaller
switch requires more allocation epochs to converge.

Across different task types, the results are qualitatively consis-
tent, save for two exceptions. First, the drop ratio for HH detection
(Figure 7(a)) increases from switch capacity of 512 to 1024, which
is likely because of a decrease in the rejection ratio. Moreover, its
drop rate is higher than other tasks, which we believe is because
we under-estimate the accuracy of tasks. Remember that to calcu-
late the number of missed HHs under a prefix we used the bound
of volume

θ
. However, the missed HHs could have larger volumes

than θ and make this upper bound loose. This loose upper bound
ensures better 5th percentile performance than other schemes we
have tried, so it seems a better design choice: it drops more tasks
to favor satisfying more. Second, the average satisfaction of Equal
and Fixed is higher than other task types for change detection (but
the tail performance is poor). This is because, in our dataset, not
all epochs have a significant change, thus the tasks are satisfied in
those epochs even with very small resources.
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Figure 8: Large scale simulation (combined workload)
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Figure 9: Accuracy bound paramter sensitivity analysis

6.3 Results from Simulation at Scale
We use simulation to study the performance of DREAM and

other alternatives at larger scale. Our simulator uses the same code
base as the prototype and is validated for the same setting [32].

DREAM’s superior performance is also evident in larger net-
works. Figure 8 compares the satisfaction and rejection ratio of
the combined workload on 32 switches with 4096 tasks (results for
individual task types are quantitatively similar). In this much larger
setting, the superior tail satisfaction of DREAM at low load (high
capacity) and the superior average satisfaction at high load (low ca-
pacity) are strikingly evident. As with smaller networks, DREAM
has a small drop ratio (less than 5%) at high load.

6.4 Parameter Sensitivity Analysis
To understand how sensitive our results are to changes in vari-

ous parameters, we conduct several experiments with a switch ca-
pacity of 1024 TCAM entries, but vary several other parameters.
We note that for our baseline workload, 1024 TCAM entries repre-
sent a constrained setting. For this set of results, we show results
for a specific type of task (HHH), rather than using results from a
combined workload, as this makes it easier to interpret the results
(Figures 9). A companion report [32] evaluates sensitivity to HHH
threshold, number of switches per task, task duration and task ar-
rival rate. The qualitative behavior of other tasks is similar.

DREAM keeps tasks satisfied for different accuracy bounds.
With higher accuracy bounds the allocation becomes harder, since
tasks in general need more resources, but DREAM can keep more
tasks satisfied with a smaller rejection rate compared to Fixed al-
location (Figure 9). DREAM is also uniformly better than Equal
allocation because it effectively multiplexes resources across tasks.

Headroom is important to keep drop rate low. If DREAM does
not reject tasks a priori, many tasks will starve just after joining
the system. For example, Figure 10(b) shows a drop rate of 30%
for DREAM when there is no headroom at an allocation interval of
2s. Interestingly, the level of headroom does not seem to make a
significant difference in the statistics of satisfaction, but can affect
drop rates. With a 5% and 10% headroom, drop rates are negligible.

Other DREAM parameters include allocation interval, drop thresh-
old, and the MM algorithm multiplicative factor. Figure 10(a) shows
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Figure 6: Satisfaction in prototype
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Figure 7: Rejection and drop in prototype

that allocating resources infrequently with a larger allocation inter-
val results in lower satisfaction because DREAM cannot adapt re-
sources quickly enough. Smaller drop threshold increases the drop
rate and satisfaction, and increasing the multiplicative factor of the
MM algorithm causes higher rejection rate because poor tasks over-
shoot their goal by large change step sizes and thereby reduce head-
room. Note that a smaller multiplication factor requires a larger
drop threshold to avoid unnecessary drops in under-loaded cases.
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6.5 Control Loop Delay
The delay of the control loop – the process of configuring coun-

ters and updating rules in TCAMs – can affect the accuracy of
real prototypes because important events can be missed while these
counters are being updated. We calculate the control loop delay by
calculating the average delay between fetching the counters from
the switches to receiving the OpenFlow barrier reply from all switch-
es after installing incremental rules on the prototype.

Figure 11(a) breaks down the delay of control loop into: saving
the incremental rules, fetching the counters, allocating resources,
creating the report and estimating its accuracy, configuring coun-
ters through divide and merge algorithm and the runtime overhead
for combining counter statistics from multiple switches and creat-
ing a counter on multiple switches for all tasks. The interesting
points are: (1) the allocation delay (the overhead of computing new
allocations) is negligible compared to other delays; (2) the aver-
age (95th%) allocation delay decreases with increasing switch size
from 0.65 (3.1) ms to 0.5 (1.3) ms, because for larger switches,
fewer tasks are dissatisfied although more tasks have been admit-
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Figure 11: Control loop delay (combined workload)

ted; (3) fetch times dominate save times (although it takes longer
to save or delete a counter than to fetch one) because we fetch all
counters, but only delete and save incrementally. For example, for
the case of switches with 1024 TCAM capacity, on average in each
epoch 90% of the counters did not change. This number increases
for larger switch capacities as tasks need to configure their coun-
ters less frequently because (a) they already have an accurate view
of network (b) their allocations changes rarely as more tasks are
satisfied with more resources.

Finally, the DREAM controller scales to many tasks because it
is highly parallelizable; each task can run on a core and each per-
switch allocator can run separately. The per-switch resource allo-
cator does more work as we increase the number of switches per
task, since each switch sees more tasks. Figure 11(b) shows that
the mean, and 95th percentile of allocation delay in the large scale
simulation environment (on a 32 core machine) increases for larger
number of switches per task, but the mean is still less than 10ms
and the control loop delay is still dominated by other (unavoidable)
latencies in the system.

7. RELATED WORK
Software-defined measurement and programmable measure-
ment: Prior work has explored different measurement primitives [20,
35], but, unlike DREAM, assumes offline analysis of collected mea-
surement data, and thus cannot dynamically change their measure-
ment resource usage when traffic changes or more measurement
tasks come.

Previous work on software-defined measurement [39, 31, 25]
and programmable measurement [18, 40] has shown the benefits of



allowing operators or cloud tenants to customize the measurement
for their traffic with different measurement primitives. Amazon
CloudWatch [2] also provides simple customized measurement in-
terface for tenants. Like these, DREAM allows measurement tasks
to specify the flows and traffic characteristics to measure, but, be-
yond prior work, provides dynamic resource allocation solutions to
enable more and finer-grained measurement tasks.

Resource allocation of measurement tasks: OpenSketch [39]
uses worst case theoretical bounds of sketches to allocate resources
on a single switch to measurement tasks. CSAMP [34] uses consis-
tent sampling to distribute flow measurement on multiple switches
for a single measurement task and aims at maximizing the flow
coverage. Volley [29] uses a sampling-based approach to moni-
tor state changes in the network, with the goal of minimizing the
number of sampling operations. Payless [14] decides the measure-
ment frequency for concurrent measurement tasks to minimize the
controller bandwidth usage, but does not provide any guarantee
on accuracy or bound on switch resources. In contrast, DREAM
focuses on flow-based rules in TCAM. DREAM dynamically al-
locates network-wide resources to multiple measurement tasks to
achieve their given accuracy bound.

TCAM-based measurement and accuracy estimators: Previ-
ous TCAM-based algorithms for specific measurement tasks either
only work on a single switch [31, 26, 25] or do not adjust counters
for bounded resources at switches [41, 26]. We designed a generic
divide-and-merge measurement framework for multiple switches
with resource constraints. Previous work has proved the theoreti-
cal bounds for the worst case resource usage for only hash-based
measurements [17, 16]. We proposed heuristics for estimating the
accuracy of TCAM-based measurement algorithms by exploiting
relationships between counters already collected.

8. CONCLUSIONS
Measurement is fundamental for network management systems.

DREAM enables operators and cloud tenants to flexibly specify
their measurement tasks in a network, and dynamically allocates
TCAM resources to these tasks based on the resource-accuracy
tradeoffs for each task. DREAM ensures high accuracy for tasks,
while taking network-wide resource constraints as well as traffic
and task dynamics into account.
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Abstract

Cloud operators increasingly need more and more fine-
grained rules to better control individual network flows
for various traffic management policies. In this paper,
we explore automated rule management in the context of
a system called vCRIB (a virtual Cloud Rule Informa-
tion Base), which provides the abstraction of a central-
ized rule repository. The challenge in our approach is
the design of algorithms that automatically off-load rule
processing to overcome resource constraints on hypervi-
sors and/or switches, while minimizing redirection traf-
fic overhead and responding to system dynamics. vCRIB
contains novel algorithms for finding feasible rule place-
ments and adapting traffic overhead induced by rule
placement in the face of traffic changes and VM migra-
tion. We demonstrate that vCRIB can find feasible rule
placements with less than 10% traffic overhead even in
cases where the traffic-optimal rule placement may be in-
feasible with respect to hypervisor CPU or memory con-
straints.

1 Introduction
To improve network utilization, application perfor-
mance, fairness and cloud security among tenants in
multi-tenant data centers, recent research has proposed
many novel traffic management policies [8, 32, 28, 17].
These policies require fine-grained per-VM, per-VM-
pair, or per-flow rules. Given the scale of today’s data
centers, the total number of rules within a data center can
be hundreds of thousands or even millions (Section 2).
Given the expected scale in the number of rules, rule
processing in future data centers can hit CPU or mem-
ory resource constraints at servers (resulting in fewer re-
sources for revenue-generating tenant applications) and
rule memory constraints at the cheap, energy-hungry
switches.

In this paper, we argue that future data centers will re-
quire automated rule management in order to ensure rule
placement that respects resource constraints, minimizes
traffic overhead, and automatically adapts to dynamics.
We describe the design and implementation of a virtual
Cloud Rule Information Base (vCRIB), which provides
the abstraction of a centralized rule repository, and au-
tomatically manages rule placement without operator or

Figure 1: Virtualized Cloud Rule Information Base (vCRIB)

tenant intervention (Figure 1). vCRIB manages rules
for different policies in an integrated fashion even in the
presence of system dynamics such as traffic changes or
VM migration, and is able to manage a variety of data
center configurations in which rule processing may be
constrained either to switches or servers or may be per-
mitted on both types of devices, and where both CPU and
memory constraints may co-exist.

vCRIB’s rule placement algorithms achieve resource-
feasible, low-overhead rule placement by off-loading
rule processing to nearby devices, thus trading off some
traffic overhead to achieve resource feasibility. This
trade-off is managed through a combination of three
novel features (Section 3).

• Rule offloading is complicated by dependencies be-
tween rules caused by overlaps in the rule hyperspace.
vCRIB uses per-source rule partitioning with replica-
tion, where the partitions encapsulate the dependen-
cies, and replicating rules across partitions avoids rule
inflation caused by splitting rules.

• vCRIB uses a resource-aware placement algorithm
that offloads partitions to other devices in order to find
a feasible placement of partitions, while also trying to
co-locate partitions which share rules in order to op-
timize rule memory usage. This algorithm can deal
with data center configurations in which some devices
are constrained by memory and others by CPU.

• vCRIB also uses a traffic-aware refinement algorithm
that can, either online, or in batch mode, refine parti-
tion placements to reduce traffic overhead while still
preserving feasibility. This algorithm avoids local
minima by defining novel benefit functions that per-
turb partitions allowing quicker convergence to feasi-
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ble low overhead placement.
We evaluate (Section 4) vCRIB through large-scale

simulations, as well as experiments on a prototype built
on Open vSwitch [4] and POX [1]. Our results demon-
strate that vCRIB is able to find feasible placements with
a few percent traffic overhead, even for a particularly
adversarial setting in which the current practice needs
more memory than the memory capacity of all the servers
combined. In this case, vCRIB is able to find a feasi-
ble placement, without relying on switch memory, albeit
with about 20% traffic overhead; with modest amounts
of switch memory, this overhead drops dramatically to
less than 3%. Finally, vCRIB correctly handles heteroge-
neous resource constraints, imposes minimal additional
traffic on core links, and converges within 5 seconds af-
ter VM migration or traffic changes.

2 Motivation and Challenges
Today, tenants in data centers operated by Amazon [5]
or whose servers run software from VMware place their
rules at the servers that source traffic. However, mul-
tiple tenants at a server may install too many rules at
the same server causing unpredictable failures [2]. Rules
consume resources at servers, which may otherwise be
used for revenue-generating applications, while leaving
many switch resources unused.

Motivated by this, we propose to automatically man-
age rules by offloading rule processing to other devices in
the data center. The following paragraphs highlight the
main design challenges in scalable automated rule man-
agement for data centers.

The need for many fine-grained rules. In this pa-
per, we consider the class of data centers that provide
computing as a service by allowing tenants to rent vir-
tual machines (VMs). In this setting, tenants and data
center operators need fine-grained control on VMs and
flows to achieve different management policies. Access
control policies either block unwanted traffic, or allocate
resources to a group of traffic (e.g., rate limiting [32],
fair sharing [29]). For example, to ensure each tenant
gets a fair share of the bandwidth, Seawall [32] installs
rules that match the source VM address and performs
rate limiting on the corresponding flows. Measurement
policies collect statistics of traffic at different places. For
example, to enable customized routing for traffic engi-
neering [8, 11] or energy efficiency [17], an operator may
need to get traffic statistics using rules that match each
flow (e.g., defined by five tuples) and count its number of
bytes or packets. Routing policies customize the routing
for some types of traffic. For example, Hedera [8] per-
forms specific traffic engineering for large flows, while
VLAN-based traffic management solutions [28] use dif-
ferent VLANs to route packets. Most of these policies,

(a) Wild card rules in a flow space (b) VM assignment

Figure 2: Sample ruleset (black is accept, white is deny) and
VM assignment (VM number is its IP)

expressed in high level languages [18, 37], can be trans-
lated into virtual rules at switches1.

A simple policy can result in a large number of fine-
grained rules, especially when operators wish to con-
trol individual virtual machines and flows. For exam-
ple, bandwidth allocation policies require one rule per
VM pair [29] or per VM [29], and access control policies
might require one rule per VM pair [30]. Data center traf-
fic measurement studies have shown that 11% of server
pairs in the same rack and 0.5% of inter-rack server
pairs exchange traffic [22], so in a data center with 100K
servers and 20 VMs per server, there can, be 1G to 20G
rules in total (200K per server) for access control or fair
bandwidth allocation. Furthermore, state-of-the-art solu-
tions for traffic engineering in data centers [8, 11, 17] are
most effective when per-flow statistics are available. In
today’s data centers, switches routinely handle between
1K to 10K active flows within a one-second interval [10].
Assume a rack with 20 servers and if each server is the
source of 50 to 500 active flows, then, for a data center
with 100K servers, we can have up to 50M active flows,
and need one measurement rule per-flow.

In addition, in a data center where multiple concurrent
policies might co-exist, rules may have dependencies be-
tween them, so may require carefully designed offload-
ing. For example, a rate-limiting rule at a source VM A
can overlap with the access control rule that blocks traf-
fic to destination VM B, because the packets from A to
B match both rules. These rules cannot be offloaded to
different devices.

Resource constraints. In modern data centers, rules
can be processed either at servers (hypervisors) or pro-
grammable network switches (e.g., OpenFlow switches).
Our focus in this paper is on flow-based rules that match
packets on one or more header fields (e.g., IP addresses,
MAC addresses, ports, VLAN tags) and perform various
actions on the matching packets (e.g., drop, rate limit,
count). Figure 2(a) shows a flow-space with source and

1Translating high-level policies to fine-grained rules is beyond the
scope of our work.
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destination IP dimensions (in practice, the flow space
has 5 dimensions or more covering other packet header
fields). We show seven flow-based rules in the space;
for example, A1 represents a rule that blocks traffic from
source IP 2 (VM2) to destination IP 0-3 (VM 0-3).

While software-based hypervisors at servers can sup-
port complex rules and actions (e.g., dynamically calcu-
lating rates of each flow [32]), they may require commit-
ting an entire core or a substantial fraction of a core at
each server in the data center. Operators would prefer
to allocate as much CPU/memory as possible to client
VMs to maximize their revenue; e.g., RackSpace opera-
tors prefer not to dedicate even a portion of a server core
for rule processing [6]. Some hypervisors offload rule
processing to the NIC, which can only handle limited
number of rules due to memory constraints. As a result,
the number of rules the hypervisor can support is limited
by the available CPU/memory budget for rule processing
at the server.

We evaluate the numbers of rules and wildcard entries
that can be supported by Open vSwitch, for different val-
ues of flow arrival rates and CPU budgets in Figure 3.
With 50% of a core dedicated for rule processing and a
flow arrival rate of 1K flows per second, the hypervisor
can only support about 2K rules when there are 600 wild-
card entries. This limit can easily be reached for some of
the policies described above, so that manual placement of
rules at sources can result in infeasible rule placement.

To achieve feasible placement, it may be necessary to
offload rules from source hypervisors to other devices
and redirect traffic to these devices. For instance, sup-
pose VM2, and VM6 are located on S1 (Figure 2(b)).
If the hypervisor at S1 does not have enough resources
to process the deny rule A3 in Figure 2(a), we can in-
stall the rule at ToR1, introducing more traffic overhead.
Indeed, some commercial products already support of-
floading rule processing from hypervisors to ToRs [7].
Similarly, if we were to install a measurement rule that
counts traffic between S1 and S2 at Aggr1, it would cause
the traffic between S1 and S2 to traverse through Aggr1
and then back. The central challenge is to design a col-
lection of algorithms that manages this tradeoff — keeps
the traffic overhead induced by rule offloading low, while
respecting the resource constraint.

Offloading these rules to programmable switches,
which leverage custom silicon to provide more scalable
rule processing than hypervisors, is also subject to re-
source constraints. Handling the rules using expensive
power-hungry TCAMs limits the switch capacity to a few
thousand rules [15], and even if this number increases in
the future its power and silicon usage limits its applica-
bility. For example, the HP ProCurve 5406zl switch
hardware can support about 1500 OpenFlow wildcard
rules using TCAMs, and up to 64K Ethernet forwarding
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Figure 3: Performance of openvswitch (The two numbers in
the legend mean CPU usage of one core in percent

and number of new flows per second.)

entries [15].

Heterogeneity and dynamics. Rule management is fur-
ther complicated by two other factors. Due to the differ-
ent design tradeoffs between switches and hypervisors,
in the future different data centers may choose to support
either programmable switches, hypervisors, or even, es-
pecially in data centers with large rule bases, a combi-
nation of the two. Moreover, existing data centers may
replace some existing devices with new models, result-
ing in device heterogeneity. Finding feasible placements
with low traffic overhead in a large data center with dif-
ferent types of devices and qualitatively different con-
straints is a significant challenge. For example, in the
topology of Figure 1, if rules were constrained by an op-
erator to be only on servers, we would need to automati-
cally determine whether to place a measurement rule for
tenant traffic between S1 and S2 at one of those servers,
but if the operator allowed rule placement at any device,
we could choose between S1, ToR1, or S2; in either case,
the tenant need not know the rule placement technology.

Today’s data centers are highly dynamic environments
with policy changes, VM migrations, and traffic changes.
For example, if VM2 moves from S1 to S3, the rules A0,
A1, A2 and A4 should me moved to S3 if there are enough
resources at S3’s hypervisor. (This decision is compli-
cated by the fact that A4 overlaps with A3.) When traffic
changes, rules may need to be re-placed in order to sat-
isfy resource constraints or reduce traffic overhead.

3 vCRIB Automated Rule Management
To address these challenges, we propose the design of
a system called vCRIB (virtual Cloud Rule Information
Base) (Figure 1). vCRIB provides the abstraction of a
centralized repository of rules for the cloud. Tenants and
operators simply install rules in this repository. Then
vCRIB uses network state information including network
topology and the traffic information to proactively place
rules in hypervisors and/or switches in a way that re-
spects resource constraints and minimizes the redirection
traffic. Proactive rule placement incurs less controller
overhead and lower data-path delays than a purely reac-
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Figure 4: vCRIB controller architecture

tive approach, but needs sophisticated solutions to opti-
mize placement and to quickly adapt to cloud dynamics
(e.g., traffic changes and VM migrations), which is the
subject of this paper. A hybrid approach, where some
rules can be inserted reactively, is left to future work.

Challenges
Designs

Overlapping 
rules

Resource 
constraints

Traffic 
overhead

Heterogeneity Dynamics

Partitioning 
with replication

Per-source 
partitions

Similarity

Resource usage 
functions

Resource-aware 
placement

Traffic-aware 
refinement

Table 1: Design choices and challenges mapping

vCRIB makes several carefully chosen design deci-
sions (Figure 4) that help address the diverse challenges
discussed in Section 2 (Table 1). It partitions the rule
space to break dependencies between rules, where each
partition contains rules that can be co-located with each
other; thus, a partition is the unit of offloading decisions.
Rules that span multiple partitions are replicated, rather
than split; this reduces rule inflation. vCRIB uses per-
source partitions: within each partition, all rules have
the same VM as the source so only a single rule is re-
quired to redirect traffic when that partition is offloaded.
When there is similarity between co-located partitions
(i.e., when partitions share rules), vCRIB is careful not
to double resource usage (CPU/memory) for these rules,
thereby scaling rule processing better. To accommo-
date device heterogeneity, vCRIB defines resource us-
age functions that deal with different constraints (CPU,
memory etc.) in a uniform way. Finally, vCRIB splits
the task of finding “good” partition off-loading oppor-
tunities into two steps: a novel bin-packing heuristic
for resource-aware partition placement identifies feasi-
ble partition placements that respect resource constraints,
and leverage similarity; and a fast online traffic-aware
refinement algorithm which migrates partitions between

devices to explore only feasible solutions while reduc-
ing traffic overhead. The split enables vCRIB to quickly
adapt to small-scale dynamics (small traffic changes, or
migration of a few VMs) without the need to recompute
a feasible solution in some cases. These design decisions
are discussed below in greater detail.

3.1 Rule Partitioning with Replication

The basic idea in vCRIB is to offload the rule pro-
cessing from source hypervisors and allow more flexi-
ble and efficient placement of rules at both hypervisors
and switches, while respecting resource constraints at
devices and reducing the traffic overhead of offloading.
Different types of rules may be best placed at different
places. For instance, placing access control rules in the
hypervisor (or at least at the ToR switches) can avoid in-
jecting unwanted traffic into the network. In contrast, op-
erations on the aggregates of traffic (e.g., measuring the
traffic traversing the same link) can be easily performed
at switches inside the network. Similarly, operations on
inbound traffic from the Internet (e.g., load balancing)
should be performed at the core/aggregate routers. Rate
control is a task that can require cooperation between the
hypervisors and the switches. Hypervisors can achieve
end-to-end rate control by throttling individual flows or
VMs [32], but in-network rate control can directly avoid
buffer overflow at switches. Such flexibility can be used
to manage resource constraints by moving rules to other
devices.

However, rules cannot be moved unilaterally because
there can be dependencies among them. Rules can over-
lap with each other especially when they are derived
from different policies. For example, with respect to Fig-
ure 2, a flow from V M6 on server S1 to V M1 on server S2
matches both the rule A3 that blocks the source V M1 and
the rule A4 that accepts traffic to destination V M1. When
rules overlap, operators specify priorities so only the rule
with the highest priority takes effect. For example, op-
erators can set A4 to have higher priority. Overlapping
rules make automated rule management more challeng-
ing because they constrain rule placement. For example,
if we install A3 on S1 but A4 on ToR1, the traffic from
V M6 to V M1, which should be accepted, matches A3
first and gets blocked.

One way to handle overlapping rules is to divide the
flow space into multiple partitions and split the rule that
intersects multiple partitions into multiple independent
rules, partition-with-splitting [38]. Aggressive rule split-
ting can create many small partitions making it flexible
to place the partitions at different switches [26], but can
increase the number of rules, resulting in inflation. To
minimize splitting, one can define a few large partitions,
but these may reduce placement flexibility, since some
partitions may not “fit” on some of the devices.
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(a) Ruleset (b) Partition-with-replication (c) P1 & P3 on a device (d) P2 & P3 on a device

Figure 5: Illustration of partition-with-replications (black is accept, white is deny)

To achieve the flexibility of small partitions while lim-
iting the effect of rule inflation, we propose a partition-
with-replication approach that replicates the rules across
multiple partitions instead of splitting them. Thus, in
our approach, each partition contains the original rules
that are covered partially or completely by that partition;
these rules are not modified (e.g., by splitting). For ex-
ample, considering the rule set in Figure 5(a), we can
form the three partitions shown in Figure 5(b). We in-
clude both A1 and A3 in P1, the left one, in their original
shape. The problem is that there are other rules (e.g., A2,
A7) that overlap with A1 and A3, so if a packet matches
A1 at the device where P1 is installed, it may take the
wrong action – A1’s action instead of A7’s or A2’s ac-
tion. To address this problem, we leverage redirection
rules R2 or R3 at the source of the packet to completely
cover the flow space of P2 or P3, respectively. In this
way, any packets that are outside P1’s scope will match
the redirection rules and get directed to the current host
of the right partition where the packet can match the right
rule. Notice that the other alternatives described above
also require the same number of redirection rules, but we
leverage high priority of the redirection rules to avoid in-
correct matches.

Partition-with-replication allows vCRIB to flexibly
manage partitions without rule inflation. For example,
in Figure 5(c), we can place partitions P1 and P3 on one
device; the same as in an approach that uses small parti-
tions with rule splitting. The difference is that since P1
and P3 both have rules A1, A3 and A0, we only need to
store 7 rules using partition-with-replication instead of
10 rules using small partitions. On the other hand, we
can prove that the total number of rules using partition-
with-replication is the same as placing one large partition
per device with rule splitting (proof omitted for brevity).

vCRIB generates per-source partitions by cutting the
flow space based on the source field according to the
source IP addresses of each virtual machine. For ex-
ample, Figure 6(a) presents eight per-source partitions
P0, · · · ,P7 in the flow space separated by the dotted
black lines.

Per-source partitions contain rules for traffic sourced
by a single VM. Per-source partitions make the place-
ment and refinement steps simpler. vCRIB only needs

(a) Per-source partitions (b) partition assignment

Figure 6: Rule partition example

one redirection rule installed at the source hypervisor to
direct the traffic to the place where the partition is stored.
Unlike per-source partitions, a partition that spans mul-
tiple source may need to be replicated; vCRIB does not
need to replicate partitions. Partitions are ordered in the
source dimension, making it easy to identify similar par-
titions to place on the same device.

3.2 Partition Assignment and Resource Usage

The central challenge in vCRIB design is the assign-
ment of partitions to devices. In general, we can for-
mulate this as an optimization problem, whose goal is
to minimize the total traffic overhead subject to the re-
source constraints at each device.2 This problem, even
for partition-with-splitting, is equivalent to the gener-
alized assignment problem, which is NP-hard and even
APX-hard to approximate [14]. Moreover, existing ap-
proximation algorithms for this problem are inefficient.
We refer the reader to a technical report which discusses
this in greater depth [27].

We propose a two-step heuristic algorithm to solve
this problem. First, we perform resource-aware place-
ment of partitions, a step which only considers resource
constraints; next, we perform traffic-aware refinement, a
step in which partitions reassigned from one device to
another to reduce traffic overhead. An alternative ap-
proach might have mapped partitions to devices first to
minimize traffic overhead (e.g., placing all the partitions
at the source), and then refined the assignments to fit
resource constraints. With this approach, however, we

2One may formulate other optimization problems such as minimiz-
ing the resource usage given the traffic usage budget. A similar greedy
heuristic can also be devised for these settings.
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cannot guarantee that we can find a feasible solution
in the second stage. Similar two-step approaches have
also been used in the resource-aware placement of VMs
across servers [20]. However, placing partitions is more
difficult than placing VMs because it is important to co-
locate partitions which share rules, and placing partitions
at different devices incurs different resource usage.

Before discussing these algorithms, we describe
how vCRIB models resource usage in hypervisors and
switches in a uniform way. As discussed in Sec-
tion 2, CPU and memory constraints at hypervisors and
switches can impact rule placement decisions. We model
resource constraints using a function F (P,d); specif-
ically, F (P,d) is the percentage of the resource con-
sumed by placing partition P on a device d. F de-
termines how many rules a device can store, based on
the rule patterns (i.e., exact match, prefix-based match-
ing, and match based on wildcard ranges) and the re-
source constraints (i.e., CPU, memory). For example, for
a hardware OpenFlow switch d with sTCAM(d) TCAM
entries and sSRAM(d) SRAM entries, the resource con-
sumption F (P,d) = re(P)/sSRAM(d)+rw(P)/sTCAM(d),
where re and rw are the numbers of exact matching rules
and wildcard rules in P respectively.

The resource function for Open vSwitch is more com-
plicated and depends upon the number of rules r(P) in
the partition P, the number of wildcard patterns w(P) in
P, and the rate k(d) of new flow arriving at switch d.
Figure 3 shows the number of rules an Open vSwitch
can support for different number of wild card patterns.3

The number of rules it can support reduces exponentially
with the increase of the number of wild card patterns (the
y-axis in Figure 3 is in log-scale), because Open vSwitch
creates a hash table for each wild card pattern and goes
through these tables linearly. For a fixed number of wild
card patterns and the number of rules, to double the num-
ber of new flows that Open vSwitch can support, we must
double the CPU allocation.

We capture the CPU resource demand of Open
vSwitch as a function of the number of new flows per
second matching the rules in partition and the number of
rules and wild card patterns handled by it. Using non-
linear least squares regression, we achieved a good fit for
Open vSwitch performance in Figure 3 with the func-
tion F (P,d) = α(d)× k(d)×w(P)× log

(

β (d)r(P)
w(P)

)

, where

α = 1.3×10−5, β = 232, with R2 = 0.95.4

3The IP prefixes with different lengths 10.2.0.0/24 and 10.2.0.0/16
are two wildcard patterns. The number of wildcard patterns can be
large when the rules are defined on multiple tuples. For example, the
source and destination pairs can have at most 33*33 wildcard patterns.

4R2 is a measure of goodness of fit with a value of 1 denoting a
perfect fit.

3.3 Resource-aware Placement

Resource-aware partition placement where partitions do
not have rules in common can be formulated as a bin-
packing problem that minimizes the total number of de-
vices to fit all the partitions. This bin-packing problem
is NP-hard, but there exist approximation algorithms for
it [21]. However, resource-aware partition placement for
vCRIB is more challenging since partitions may have
rules in common and it is important to co-locate parti-
tions with shared rules in order to save resources.

Algorithm 1 First Fit Decreasing Similarity Algorithm

P= set of not placed partitions
while |P|> 0 do

Select a partition Pi randomly
Place Pi on an empty device Mk.
repeat

Select Pj ∈ P with maximum similarity to Pi
until Placing Pj on Mk Fails

end while

We use a heuristic algorithm for bin-packing similar
partitions called First Fit Decreasing Similarity (FFDS)
(Algorithm 1) which extends the traditional FFD algo-
rithm [33] for bin packing to consider similarity between
partitions. One way to define similarity between two
partitions is as the number of rules they share. For ex-
ample, the similarity between P4 and P5 is |P4∩P5| =
|P4|+ |P5|− |P4∪P5| = 4. However, different devices
may have different resource constraints (one may be con-
strained by CPU, and another by memory). A more gen-
eral definition of similarity between partitions Pi and Pk
on device d is based on the resource consumption func-
tion F : our similarity function F (Pi,d) +F (Pk,d)−
F (Pi ∪ Pk,d) compares the network resource usage of
co-locating those partitions.

Given this similarity definition, FFDS first picks a par-
tition Pi randomly and stores it in a new device.5 Next,
we pick partitions similar to Pi until the device cannot fit
more. Finally, we repeat the first step till we go through
all the partitions.

For the memory usage model, since we use per-source
partitions, we can quickly find partitions similar to a
given partition, and improve the execution time of the
algorithm from a few minutes to a second. Since per-
source partitions are ordered in the source IP dimension
and the rules are always contiguous blocks crossing only

5As a greedy algorithm, one would expect to pick large partitions
first. However, since we have different resource functions for different
devices, it is hard to pick the large partitions based on different metrics.
Fortunately, in theory, picking partitions randomly or greedily do not
affect the approximation bound of the algorithm. As an optimization,
instead of picking a new device, we can pick the device whose existing
rules are most similar to the new partition.
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neighboring partitions, we can prove that the most sim-
ilar partitions are always the ones adjacent to the parti-
tion [27]). For example, P4 has 4 common rules with
P5 but 3 common rules with P7 in Figure 6(a). So in
the third step of FFDS, we only need to compare left and
right unassigned partitions.

To illustrate the algorithm, suppose each server in the
topology of Figure 1 has a capacity of four rules to place
the partitions and switches have no capacity. Considering
the ruleset in Figure 2(a), we first pick a random partition
P4 and place it on an empty device. Then, we check P3
and P5 and pick P5 as it has more similar rules (4 vs 2).
Between P3 and P6, P6 is the most similar but the device
has no additional capacity for A3, so we stop. In the next
round, we place P2 on an empty device and bring P1, P0
and P3 but stop at P6 again. The last device will contain
P6 and P7.

We have proved that, FFDS algorithm is 2-
approximation for resource-aware placement in networks
with only memory-constrained devices [27]. Approxi-
mation bounds for CPU-constrained devices is left to fu-
ture work.

Our FFDS algorithm is inspired by the tree-based
placement algorithm proposed in [33], which minimizes
the number of servers to place VMs by putting VMs
with more common memory pages together. There are
three key differences: (1) since we use per-source parti-
tions, it is easier to find the most similar partitions than
memory pages; (2) instead of placing sub-trees of VMs
in the same device, we place a set of similar partitions
in the same device since these similar partitions are not
bounded by the boundaries of a sub-tree; and (3) we are
able to achieve a tighter approximation bound (2, instead
of 3). (The construction of sub-trees is discussed in a
technical report [27]).

Finally, it might seem that, because vCRIB uses per-
source partitions, it cannot efficiently handle a rule with
a wildcard on the source IP dimension. Such a rule
would have to be placed in every partition in the source
IP range specified by the wildcard. Interestingly, in this
case vCRIB works quite well: since all partitions on a
machine will have this rule, our similarity-based place-
ment will result in only one copy of this rule per device.

3.4 Traffic-aware Refinement

The resource-aware placement places partitions without
heed to traffic overhead since a partition may be placed
in a device other than the source, but the resulting assign-
ment is feasible in the sense that it respects resource con-
straints. We now describe an algorithm that refines this
initial placement to reduce traffic overhead, while still
maintaining feasibility. Having thus separated place-
ment and refinement, we can run the (usually) fast re-
finement after small-scale dynamics (some kinds of traf-

fic changes, VM migration, or rule changes) that do not
violate resource feasibility. Because each per-source par-
tition matches traffic from exactly one source, the refine-
ment algorithm only stores each partition once in the en-
tire network but tries to migrate it closer to its source.

Given per-source partitions, an overhead-greedy
heuristic would repeatedly pick the partition with the
largest traffic overhead, and place it on the device which
has enough resources to store the partition and the lowest
traffic overhead. However, this algorithm cannot handle
dynamics, such as traffic changes or VM migration. This
is because in the steady state many partitions are already
in their best locations, making it hard to rearrange other
partitions to reduce their traffic overhead. For example,
in Figure 6(a), assume the traffic for each rule (exclud-
ing A0) is proportional to the area it covers and gener-
ated from servers in topology of Figure 6(b). Suppose
each server has a capacity of 5 rules and we put P4 on
S4 which is the source of V M4, so it imposes no traffic
overhead. Now if V M2 migrates from S1 to S4, we can-
not save both P2 and P4 on S4 as it will need space for
6 rules, so one of them must reside on ToR2. As P2 has
3 units deny traffic overhead on A1 plus 2 units of accept
traffic overhead from local flows of S4, we need to bring
P4 out of its sweet spot and put P2 instead. However,
the overhead-greedy algorithm cannot move P4 as it is
already in its best location.

To get around this problem, it is important to choose
a potential refinement step that not only considers the
benefit of moving the selected partition, but also consid-
ers the other partitions that might take its place in future
refinement steps. We do this by calculating the bene-
fit of moving a partition Pi from its current device d(Pi)
to a new device j, M(Pi, j). The benefit comes from
two parts: (1) The reduction in traffic (the first term of
Equation 1); (2) The potential benefit of moving other
partitions to d(Pi) using the freed resources from Pi, ex-
cluding the lost benefit of moving these partitions to j
because Pi takes the resources at j (the second term of
Equation 1). We define the potential benefit of mov-
ing other partitions to a device j as the maximum ben-
efits of moving a partition Pk from a device d to j, i.e.,
Q j = maxk,d(T (Pk,d)−T (Pk, j)). We speed up the cal-
culation of Q j by only considering the current device of
Pk and the best device b(Pk) for Pk with the least traffic
overhead. (We omit the reasons for brevity.) In summary,
the benefit function is defined as:

M(Pi, j) = (T (Pi,d(Pi))−T (Pi, j))+(Qd(Pi)−Q j) (1)

Our traffic-aware refinement algorithm is benefit-
greedy, as described in Algorithm 2. The algorithm is
given a time budget (a “timeout”) to run; in practice, we
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Algorithm 2 Benefit-Greedy algorithm

Update b(Pi) and Q(d)
while not timeout do

Update the benefit of moving every Pi to its best feasible
target device M(Pi,b(Pi))
Select Pi with the largest benefit M(Pi,b(Pi))
Select the target device j for Pi that maximizes the benefit
M(Pi, j)
Update best feasible target devices for partitions and Q’s

end while
return the best solution found

have found time budgets of a few seconds to be suffi-
cient to generate low traffic-overhead refinements. At
each step, it first picks that partition Pi that would bene-
fit the most by moving to its best feasible device b(Pi),
and then picks the most beneficial and feasible device j
to move Pi to.6

We now illustrate the benefit-greedy algorithm (Algo-
rithm 2) using our running example in Figure 6(b). The
best feasible target device for both P2 and P4 are ToR2.
P2 maximizes QS4 with value 5 because its deny traffic is
3 and has 1 unit of accept traffic to V M4 on S4. Also we
assume that Q j is zero for all other devices. In the first
step, the benefit of migrating P2 to ToR2 is larger than
moving P4 to ToR2, while the benefits of all the other
migration steps are negative. After moving P2 to ToR2
the only beneficial step is moving P4 out of S4. After
moving P4 to ToR2, migrating P2 to S4 become feasi-
ble, so QS4 will become 0 and as a result the benefit of
this migration step will be 5. So the last step is moving
P2 to S4.

An alternative to using a greedy approach would
have been to devise a randomized algorithm for perturb-
ing partitions. For example, a Markov approximation
method is used in [20] for VM placement. In this ap-
proach, checking feasibility of a partition movement to
create the links in the Markov chain turns out to be com-
putationally expensive. Moreover, a randomized iterative
refinement takes much longer to converge after a traffic
change or a VM migration.

4 Evaluation
We first use simulations on a large fat-tree topology with
many fine-grained rules to study vCRIB’s ability to min-
imize traffic overhead given resource constraints. Next,
we explore how the online benefit-greedy algorithm han-
dles rule re-placement as a result of VM migrations. Our
simulations are run on a machine with quad-core 3.4
GHz CPU and 16 GB Memory. Finally, we deploy our
prototype in a small testbed to understand the overhead

6By feasible device, we mean the device has enough resources to
store the partition according to the function F .

at the controller, and end-to-end delay between detecting
traffic changes and re-installing the rules.

4.1 Simulation Setup

Topology: Our simulations use a three-level fat-tree
topology with degree 16, containing 1024 servers in 128
racks connected by 320 switches. Since current hyper-
visor implementations can support multiple concurrent
VMs [31], we use 20 VMs per machine. We consider two
models of resource constraints at the servers: memory
constraints (e.g., when rules are offloaded to a NIC), and
CPU constraints (e.g., in Open vSwitch). For switches,
we only consider memory constraints.

Rules: Since we do not have access to realistic data
center rule bases, we use ClassBench [35] to create 200K
synthetic rules each having 5 fields. ClassBench has been
shown to generates rules representative of real-world ac-
cess control.

VM IP address assignment: The IP address assigned
to a VM determines the number of rules the VM matches.
A random address assignment that is oblivious to the
rules generated in the previous set may cause most of the
traffic to match the default rule. Instead, we use a heuris-
tic – we first segment the IP range with the boundaries
of rules on the source and destination IP dimensions and
pick random IP addresses from randomly chosen ranges.
We test two arrangements: Random allocation which as-
signs these IPs randomly to servers and Range allocation
which assigns a block of IPs to each server so the IP ad-
dresses of VMs on a server are in the same range.

Flow generation: Following prior work, we use
a staggered traffic distribution (ToRP=0.5, PodP=0.3,
CoreP=0.2) [8]. We assume that each machine has an av-
erage of 1K flows that are uniformly distributed among
hosted VMs; this represents larger traffic than has been
reported [10], and allows us to stress vCRIB. For each
server, we select the source IP of a flow randomly from
the VMs hosted on that machine and select the destina-
tion IP from one of the target machines matching the traf-
fic distribution specified above. The protocol and port
fields of flows also affect the distribution of used rules.
The source port is wildcarded for ClassBench rules so we
pick that randomly. We pick the destination port based
on the protocol fields and the port distributions for differ-
ent protocols (This helps us cover more rules and do not
dwell on different port values for ICMP protocol.). Flow
sizes are selected from a Pareto distribution [10]. Since
CPU processing is impacted by newly arriving flows, we
marked a subset of these flows as new flows in order to
exercise the CPU resource constraint [10]. We run each
experiment multiple times with different random seeds
to get a stable mean and standard deviation.
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Figure 7: Traffic overhead and resource constraints tradeoffs

4.2 Resource Usage and Traffic Trade-off

The goal of vCRIB rule placement is to minimize the
traffic overhead given the resource constraints. To cali-
brate vCRIB’s performance, we compare it against Sour-
cePlacement, which stores the rules at the source hy-
pervisor. Our metric for the efficacy of vCRIB’s per-
formance is the ratio of traffic as a result of vCRIB’s
rule placement to the traffic incurred as a result of Sour-
cePlacement (regardless of whether SourcePlacement is
feasible or not). When all the servers have enough capac-
ity to process rules (i.e., SourcePlacement is feasible),
it incurs lowest traffic overhead; in these cases, vCRIB
automatically picks the same rule placement as Source-
Placement, so here we only evaluate cases that Source-
Placement is infeasible. We begin with memory resource
model at servers because of its simpler similarity model
and later compare it with CPU-constrained servers.

vCRIB uses similarity to find feasible solutions when
SourcePlacement is infeasible. With Range IP allo-
cation, partitions in the Source IP dimension which are
similar to each other are saved on one server, so the av-
erage load on machines is smaller for SourcePlacement.
However, there may still be a few overloaded machines
that result in an infeasible SourcePlacement. With Ran-
dom IP allocation, the partitions on a server have low
similarity and as a result the average load of machines
is larger and there are many overloaded ones. Having
the maximum load of machines above 5K in all runs for
both Range and Random cases, we set a capacity of 4K
for servers and 0 for switches (“4K 0” setting) to make
SourcePlacement infeasible. vCRIB could successfully
fit all the rules in the servers by leveraging the similarities
of partitions and balancing the rules. The power of lever-
aging similarity is evident when we observe that in the
Random case the average number of rules per machine
(4.2K) for SourcePlacement exceeds the server capacity,
yet vCRIB finds a feasible placement by saving similar
partitions on the same machine. Moreover, vCRIB finds
a feasible solution when we add switch capacity and uses
this capacity to optimize traffic (see below), yet Source-
Placement is unable to offload the load.

vCRIB finds a placement with low traffic overhead.
Figure 7(a) shows the traffic ratio between vCRIB and

SourcePlacement for the Range and Random cases with
error bars representing standard deviation for 10 runs.
For the Range IP assignment, vCRIB minimizes the traf-
fic overhead under 0.1%. The worst-case traffic over-
head for vCRIB is 21% when vCRIB cannot leverage
rule processing in switches to place rules and the VM IP
address allocation is random, an adversarial setting for
vCRIB. The reason is that in the Random case the ar-
rangement of the traffic sources is oblivious to the simi-
larity of partitions. So any feasible placement depending
on similarity puts partitions far from their sources and
incurs traffic overhead. When it is possible to process
rules on switches, vCRIB’s traffic overhead decreases
dramatically (6% (3%) for 4K (6K) rule capacity in in-
ternal switches); in these cases, to meet resource con-
straints, vCRIB places partitions on ToR switches on the
path of traffic, incurring minimal overhead. As an aside,
these results illustrate the potential for using vCRIB’s al-
gorithms for provisioning: a data center operator might
decide when, and how much, to add switch rule process-
ing resources by exploring the trade-off between traffic
and resource usage.

vCRIB can also optimize placement given CPU con-
straints. We now consider the case where servers
may be constrained by CPU allocated for rule process-
ing (Figure 7(b)). We vary the CPU budget allocated to
rule processing (10%, 20%, 40%) in combination with
zero, 4K or 6K memory at switches. For example in case
“40 0” (i.e., each server has 40% CPU budget, but there
is no capacity at switches), SourcePlacement results in
an infeasible solution, since the highest CPU usage is
56% for range IP allocation and 42% for random IP al-
location. In contrast, vCRIB can find feasible solutions
in all the cases except “10 0” case. When we have only
10% CPU budget at servers, vCRIB needs some mem-
ory space at the switches (e.g., 4K rules) to find a fea-
sible solution. With a 20% CPU budget, vCRIB can
find a feasible solution even without any switch capacity
(“20 0”). With higher CPU budgets, or with additional
switch memory, vCRIB’s traffic overhead becomes neg-
ligible. Thus, vCRIB can effectively manage heteroge-
neous resource constraints and find low traffic-overhead
placement in these settings. Unlike with memory con-
straints, Range IP assignment with CPU constraints does
not have a lower average load on servers for Source-
Placement, nor does it have a feasible solution with lower
traffic overhead, since with the CPU resource usage func-
tion closer partitions in the source IP dimension are no
longer the most similar.

4.3 Resource Usage and Traffic Spatial Distribution

We now study how resource usage and traffic overhead
are spatially distributed across a data center for the Ran-
dom case.

9



166 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

(a) Traffic overhead for different rules

4k_0 4k_4k 4k_6k
0

0.1

0.2

0.3

Tr
af

fic
 o

ve
rh

ea
d 

ra
tio

ToR
Pod
Core

(b) Traffic overhead on different links

4k_0 4k_4k 4k_6k
0

1000

2000

3000

4000

5000

M
em

or
y 

us
ag

e Server
ToR
Pod
Core

(c) Memory usage on different devices

Figure 8: Spatial distribution of traffic and resource usage

vCRIB is effective in leveraging on-path and nearby
devices. Figure 8(a) shows the case where servers
have a capacity of 4K and switches have none. We clas-
sify the rules into deny rules, accept rules whose traf-
fic stays within the rack (labelled as “ToR”), within the
Pod (“Pod”), or goes through the core routers (“Core”).
In general, vCRIB may redirect traffic to other loca-
tions away from the original paths, causing traffic over-
head. We thus classify the traffic overhead based on the
hops the traffic incurs, and then normalize the overhead
based on the traffic volume in the SourcePlacement ap-
proach. Adding the percentage of traffic that is handled
in the same rack of the source for deny traffic (8.8%) and
source or destination for accept traffic (1.8% ToR, 2.2%
POD, and 1.6% Core), shows that out of 21% traffic over-
head, about 14.4% is handled in nearby servers.

Most traffic overhead vCRIB introduces is within the
rack. Figure 8(b) classifies the locations of the ex-
tra traffic vCRIB introduces. vCRIB does not require
additional bandwidth resources at the core links; this is
advantageous, since core links can limit bisection band-
width. In part, this can be explained by the fact that only
20% of our traffic traverses core links. However, it can
also be explained by the fact that vCRIB places parti-
tions only on ToRs or servers close to the source or des-
tination. For example, in the “4K 0” case, there is 29%
traffic overhead in the rack, 11% in the Pod and 2% in
the core routers, and based on Figure 8(c) all partitions
are saved on servers. However, if we add 4K capacity to
internal switches, vCRIB will offload some partitions to
switches close to the traffic path to lower the traffic over-
head. In this case, for accept rules, the ToR switch is on
the path of traffic and does not increase traffic overhead.
Note that the servers are always full as they are the best
place for saving partitions.

4.4 Parameter Sensitivity Analysis

The IP assignment method, traffic locality and rules in
partitions can affect vCRIB performance in finding a fea-
sible solution with low traffic. Our previous evaluations
have explored uniform IP assignment for two extreme
cases Range and Random above. We have also evaluated
a skewed distribution of the number of IPs/VMs per ma-

chine but have not seen major changes in the traffic over-
head. In this case, vCRIB was still able to find a nearby
machine with lower load. We also conducted another
experiment with different traffic locality patterns, which
showed that having more non-local flows gives vCRIB
more choices to offload rule processing and reach feasi-
ble solutions with lower traffic overhead. Finally, exper-
iments on FFDS performance for different machine ca-
pacities [27] also validates its superior performance com-
paring to the tree-based placement [33]. Beyond these
kinds of analyses, we have also explored the parameter
space of similarity and partition size, which we discuss
next.
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Figure 9: vCRIB working region and ruleset properties

vCRIB uses similarity to accommodate larger parti-
tions. We have explored two properties of the rules in
partitions by changing the ruleset. In Figure 9, we de-
fine a two dimensional space: one dimension measures
the average similarity between partitions and the other
the average size of partitions. Intuitively, the size of par-
titions is a measure of the difficulty in finding a feasible
solution and similarity is the property of a ruleset that
vCRIB exploits to find solutions. To generate this fig-
ure, we start from an infeasible setting for SourcePlace-
ment with a maximum of 5.7K rules for “4k 0” setting
and then change the ruleset without changing the load on
the maximum loaded server. We then explore the two
dimensions as follows. Starting from the ClassBench
ruleset and Range IP assignment, we split rules into half
in the source IP dimension to decrease similarity with-
out changing partition sizes. To increase similarity, we
extend a rule in source IP dimension and remove rules
in the extended area to maintain the same partition size.
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Adding or removing rules matching only one VM (micro
rules), also help us change average partitions size with-
out changing the similarity. Unfortunately, removing just
micro rules is not enough to explore the entire range of
partition sizes, so we also remove rules randomly.

Figure 9(a) presents the feasibility region for vCRIB
regardless of traffic overhead. Since average similarity
cannot be more than the average partition size, the in-
teresting part of the space is below the 45◦. Note that
vCRIB is able to cover a large part of the space. More-
over, the shape of the feasibility region shows that for
a fixed average partition size, vCRIB works better for
partitions with larger similarity. This means that to han-
dle larger partitions, vCRIB needs more similarity be-
tween partitions; however, this relation is not linear since
vCRIB may not be able to utilize the available similarity
given limits on server capacity. When considering only
solutions with less than 10% traffic overhead, vCRIB’s
feasibility region (Figure 9(b)) is only slightly smaller.
This figure demonstrates vCRIB’s utility: for a small
additional traffic overhead, vCRIB can find many ad-
ditional operating points in a data center that, in many
cases, might have otherwise been infeasible.

We also tried a different method for exploring the
space, by tuning the IP selection method on a fixed rule-
set, and obtained qualitatively similar results [27].

4.5 Reaction to Cloud Dynamics

Figure 10 compares benefit-greedy (with timeout 10
seconds) with overhead-greedy and a randomized algo-
rithm7 after a single VM migration for the 4K 0 case.
Each point in Figure 10 shows a step in which one parti-
tion is moved, and the horizontal axis is time in log scale.
At time A, we migrate a VM from its current server Sold
to a new one Snew, but Snew does not have any space for
the partition of the VM, P. As a result, P remains on
Sold and the traffic overhead increases by 40MBps. Both
benefit-greedy and overhead-greedy move the partition
P for the migrated VM to a server in the rack containing
Snew at time B and reduce traffic by 20Mbps. At time B,
benefit-greedy brings out two partitions from their cur-
rent host Snew to free up the memory for P while impos-
ing a little traffic overhead. At time C, benefit-greedy
moves P to Snew and reduces traffic further by 15Mbps.
The entire process takes only 5 seconds. In contrast, the
randomized algorithm takes 100 seconds to find the right
partitions and thus is not useful with these dynamics.

We then run multiple VM migrations to study the av-
erage behavior of benefit-greedy with 5 and 10 seconds
timeout. In each 20 seconds interval, we randomly pick
a VM and move it to another random server. Our sim-
ulations last for 30 minutes. The trend of data cen-

7Markov Approximation [20] with target switch selection probabil-
ity ∝ exp(traffic reduction of migration step)
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Figure 10: Traffic refinement for one VM migration

ter traffic in Figure 11 shows that benefit-greedy main-
tains traffic levels, while overhead-greedy is unable to
do so. Over time, benefit-greedy (both configurations)
reduces the average traffic overhead around 34 MBps,
while overhead-greedy algorithm increases the overhead
by 117.3 MBps. Besides, this difference increases as the
interval between two VM migration increases.
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Figure 11: The trend of traffic during multiple VM migration

4.6 Prototype Evaluation

We built vCRIB prototype using Open vSwitch [4] as
servers and switches, and POX [1] as the platform for
vCRIB controller for micro-benchmarking.

Overhead of collecting traffic information: In our
prototype, we send traffic information collected from
each server’s Open vSwitch kernel module to the con-
troller. Each piece of information requires 13 Bytes for
5 tuples8 and 2 Bytes for the traffic change volume.

Since we only need to detect traffic changes at the rule-
level, we can more aggressively filter the traffic infor-
mation than traditional traffic engineering solutions [11].
The vCRIB controller sets a threshold δ (F) for traffic
changes of a set of flows F and sends the threshold to
the servers. The servers then only report traffic changes
above δ (F). We set the threshold δ for two different
granularities of flow sets F . A larger set F makes vCRIB
less sensitive to individual flow changes and leads to less
reporting overhead but incurs less accuracy. (1) We set
F as the volume each rule for each destination server in

8Some rules may have more packet header fields and thus require
more bytes. In this cases, we can compress these information using
fingerprints to reduce the overhead.
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each per-source partition. (2) We assume all the rules in
a partition have accept actions (as the worst case for traf-
fic). Thus, the vCRIB controller sets the threshold that
affects the size of traffic to each destination server for
each per-source partition (summing up all the rules). If
there are 20 flow changes above the threshold, we need
to send 260B/s per server, which means 20Mbps for 10K
servers in the data center. For VM migrations and rule
insertion/deletion, the vCRIB controller can be notified
directly by the the data center management system.

Controller overhead: We measure the delay of pro-
cessing 200K ClassBench rules. Initially, the vCRIB
controller partitions these rules, runs the resource-aware
placement algorithm and the traffic-aware refinement to
derive an initial placement; this takes up to five minutes.
However, these recomputations are triggered only when
a placement becomes infeasible; this can happen after a
long sequence of rule changes or VM add/remove.

The traffic overhead of rule installation and removal
depends on the number of refinement steps and the num-
ber of rules per partition. The size of OpenFlow com-
mand for a rule entry is 100 Bytes, so if a partition
has 1K rules, the overhead of removing it from one
device and installing at another device is 200KB. For
each VM migration, which needs an average of 11 par-
titions, the bandwidth overhead of moving the rules is
11×200KB=2.2MB.

Reaction to cloud dynamics: We evaluate the latency
of handling traffic changes by deploying our prototype in
a topology with five switches and six servers as shown in
Figure 1. We deploy a vCRIB controller that connects
with all the devices with an RTT of 20 ms. We set the
capacity of each server/switch as large enough to store at
most one partition. We then inject a traffic change pattern
that causes vCRIB to swap two partitions and add a redi-
rection rule at a VM. It takes vCRIB 30ms to detect the
traffic changes, and move the rules to the new locations.

5 Related Work
Our work is inspired by several different strands of re-
search, each of which we cover briefly.

Policies and rules in the cloud: Recent proposals
for new policies often propose customized systems to
manage rules on either hypervisors [4, 13, 32, 30]) or
switches [3, 8, 29]. vCRIB proposes an abstraction of
a centralized rule repository for all the policies, frees
these systems from the complexity inherent in the rule
management, and handles heterogeneous resource con-
straints at devices while minimizing the traffic overhead.

Rule management in software-defined networks
(SDNs): Recent work on SDNs provides rule reposi-
tory abstractions and some rule management capabili-

ties [12, 23, 38, 13]. vCRIB focuses on data centers,
which are more dynamic, more sensitive to traffic over-
head, and face heterogeneous resource constraints.

Distributed firewall: Distributed firewalls [9, 19], of-
ten used in enterprises, leverage a centralized manager
to deploy security policies on edge machines. vCRIB
manages more fine-grained rules on flows and VMs for
various policies including firewalls in the cloud. Rather
than placing these rules at the edge, vCRIB places these
rules taking into account the rule processing constraints,
while minimizing traffic overhead.

Rule partition and placement solutions: The problem
of partitioning and placing multi-dimensional data at dif-
ferent locations also appears in other contexts. Unlike
traditional partitioning algorithms [36, 34, 16, 25, 24]
which divide rules into partitions using a top-down ap-
proach, vCRIB uses per-source partitions to place the
partitions close to the source with low traffic overhead.
Compared with DIFANE [38], which randomly places
a single partition of rules at each switch, vCRIB takes
the partitions-with-replication approach to flexibly place
multiple per-source partitions at one device. In prelim-
inary work [26], we proposed an offline placement so-
lution which works only for the TCAM resource model.
The paper has a top-down heuristic partition-with-split
algorithm which cannot limit the overhead of redirec-
tion rules and is not optimized for CPU-based resource
model. Besides, having partitions with traffic from mul-
tiple sources requires complicated partition replication to
minimize traffic overhead. In contrast, vCRIB uses fast
per-source partition-with-replication algorithm which re-
duces TCAM-usage by leveraging similarity of partitions
and restricts the resource usage of redirection by using
limited number of equal shaped redirection rules. Our
preliminary work used an unscalable DFS branch-and-
bound approach to find a feasible solution and optimized
the traffic in one step. vCRIB scales better using a two-
phase solution where the first phase has an approxima-
tion bound in finding a feasible solution and the second
can be run separately when the placement is still feasible.

6 Conclusion
vCRIB, is a system for automatically managing the fine-
grained rules for various management policies in data
centers. It jointly optimizes resource usage at both
switches and hypervisors while minimizing traffic over-
head and quickly adapts to cloud dynamics such as traffic
changes and VM migrations. We have validated its de-
sign using simulations for large ClassBench rulesets and
evaluation on a vCRIB prototype built on Open vSwitch.
Our results show that vCRIB can find feasible place-
ments in most cases with very low additional traffic over-
head, and its algorithms react quickly to dynamics.
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ABSTRACT
Software-defined networks can enable a variety of concur-
rent, dynamically instantiated, measurement tasks, that pro-
vide fine-grain visibility into network traffic. Recently, there
have been many proposals for using sketches for network
measurement. However, sketches in hardware switches use
constrained resources such as SRAM memory, and the accu-
racy of measurement tasks is a function of the resources de-
voted to them on each switch. This paper presents SCREAM,
a system for allocating resources to sketch-based measure-
ment tasks that ensures a user-specified minimum accuracy.
SCREAM estimates the instantaneous accuracy of tasks so
as to dynamically adapt the allocated resources for each task.
Thus, by finding the right amount of resources for each task
on each switch and correctly merging sketches at the con-
troller, SCREAM can multiplex resources among network-
wide measurement tasks. Simulations with three measure-
ment tasks (heavy hitter, hierarchical heavy hitter, and super
source/destination detection) show that SCREAM can sup-
port more measurement tasks with higher accuracy than ex-
isting approaches.

CCS Concepts
•Networks→Network resources allocation; Network mon-
itoring; Data center networks; Programmable networks;

Keywords
Software-defined Measurement; Sketches; Resource Alloca-
tion

1. INTRODUCTION
Traffic measurement plays an important role in network

management. For example, traffic accounting, traffic engi-
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neering, load balancing and performance diagnosis require
measuring traffic on multiple switches in the network [6,
10]. Software-defined Measurement (SDM) [40, 33] facil-
itates controller-directed network-wide measurement: with
SDM, operators or tenants can submit measurement tasks
to the SDN controller, and the SDN controller configures
switches to monitor traffic for each task, then collects statis-
tics and produces measurement reports.

A recent prior work in software-defined measurement [33]
has relied on flow-based counters. These counters are often
implemented using TCAM memory, which is expensive and
power hungry. Moreover, flow-based counters are limited to
supporting volume-based measurement tasks such as heavy
hitter detection and often require a large number of counters.
For example, a switch may need to count traffic from thou-
sands of source IP addresses to find heavy users of a specific
service, for each of which it would require a counter. To re-
duce counter usage, many solutions rely on counting traffic
to/from prefixes (instead of specific IP addresses), and then
iteratively zooming in and out to find the right set of flows
to monitor [32, 41, 24]. Such prefix-based summarization
has two drawbacks: it cannot be applied to many tasks such
as flow-size distribution and entropy calculation, and it can
take multiple measurement epochs to reconfigure counters
(e.g., to zoom into 32 levels in the IP prefix tree) [32].

In contrast, this paper focuses on hash-based counters, or
sketches [40]. Sketches are summaries of streaming data
for approximately answering a specific set of queries. They
can be easily implemented with SRAM memory which is
cheaper and more power-efficient than TCAMs. Sketches
can use sub-linear memory space to answer many measure-
ment tasks such as finding heavy hitters [16], super-spreaders
[17], large changes [26], flow-size distribution [27], flow
quantiles [16], and flow-size entropy [29]. Finally, they can
capture the right set of flow properties in the data plane with-
out any iterative reconfiguration from the controller.

Any design for sketch-based SDM faces two related chal-
lenges. First, SDM permits multiple instances of measure-
ment tasks, of different types and defined on different aggre-
gates, to execute concurrently in a network. Furthermore, in
a cloud setting, each tenant can issue distinct measurement
tasks within its own virtual network.

The second challenge is that sketch-based measurement
tasks may require significant resources. To achieve a re-
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quired accuracy, each task may need up to a million counters,
and the number of counters is bounded by resources such as
the SRAM memory needed for saving sketch counters, the
control datapath inside switches required to report counters
from ASIC to CPU, and the control network bandwidth that
is shared among many switches.

Therefore, an SDM design must ensure efficient usage of
these resources. For many forms of sketches, it is possible to
estimate the resources required to achieve a desired accuracy
(i.e., there is a resource-accuracy trade-off). These resource
estimates are also dependent on traffic. Prior work [40] has
assumed worst-case traffic in allocating resources to sketches,
and this can result in pessimistic overall resource usage, re-
ducing the number of tasks that can be concurrently sup-
ported. In contrast, our key idea is to use a dynamic resource
allocator that gives just enough resources to each task for
the traffic it observes, and dynamically adapts the resource
allocation as traffic changes over time and across switches.

We propose a sketch-based SDM system, called SCREAM
(SketCh REsource Allocation for Measurement), which en-
ables dynamic resource allocation of limited resources for
many concurrent measurement tasks while achieving the re-
quired accuracy for each task. Our paper makes two contri-
butions: (1) Sketch-based task implementation across mul-
tiple switches: Each task type implementation must gather
sketch counters from multiple switches and prepare mea-
surement results to the user. As switches see different traf-
fic, each sketch may need different sizes for an efficient and
accurate measurement. SCREAM uses novel techniques to
merge sketches with different sizes from multiple switches.
This extension of sketch-based measurement [40] to multi-
ple switches is a critical step towards making sketches useful
in practice. (2) Accuracy estimator: SCREAM incorporates
a new method to estimate accuracy for measurement tasks on
multiple switches without ground-truth or an a priori knowl-
edge of traffic model with low estimation errors, rather than
rely on the worst-case bounds of sketches. SCREAM feeds
these instantaneous accuracy estimates (which can also give
operators some insight into how trustworthy the measure-
ments are) into a dynamic resource allocation algorithm [33]
to support more accurate tasks by leveraging temporal and
spatial statistical multiplexing.

We have implemented three measurement task types (heavy
hitter, hierarchical heavy hitter and super source/destination)
in SCREAM and improved their design for dynamic resource
allocation on multiple switches. Our simulations demon-
strate that SCREAM performs significantly better than other
allocation alternatives. Compared to OpenSketch, which al-
locates resources on a single switch based on the worst-case
bounds, SCREAM can support 2× more tasks with higher
accuracy. This result is valid across all task types and even
when applying OpenSketch on multiple switches. This is be-
cause SCREAM can leverage traffic variations over time to
multiplex resources across task instances and switches while
OpenSketch reserves the same fixed resources for all tasks
of the same type. SCREAM can support the same number of
tasks with comparable accuracy as an oracle which is aware
of future task resource requirements.

Finally, SCREAM builds upon our prior work on DREAM
[33], which establishes a framework for dynamic resource
allocation for TCAM-based measurement tasks. SCREAM
deliberately preserves many of the elements of DREAM (Sec-
tion 3), to permit a unified system that multiplexes resources
across different types of measurement tasks.

2. BACKGROUND AND MOTIVATION
Sketch-based SDM. Sketches are memory-efficient sum-
maries of streaming data for approximately answering a spe-
cific set of queries. Sketches often provide a provable trade-
off between resources and accuracy, where the definition
of accuracy depends on the queries. We focus on hash-
based sketches because they can be implemented on hard-
ware switches using commodity components (hashing, TC-
AM, and SRAM modules) as discussed in OpenSketch [40].
Note that the same accuracy estimation and similar resource
allocation technique can be applied to software switches wh-
ere cache for counters and CPU budgets per packet are lim-
ited. We leave software switches to future work but note
that measurement in software switches or hypervisors does
not extend to wide-area networks across datacenters, net-
works where operators do not have access to end hosts, and
networks which devote most server resources to revenue-
generating applications.

A commonly used sketch, the Count-Min sketch [16] can
approximate volume of traffic from each item (e.g. source
IP) and is used for many measurement tasks such as heavy
hitter detection (e.g., source IPs sending traffic more than a
threshold). Count-Min sketch keeps a two dimensional ar-
ray, A, of integer counters with w columns and d rows. For
each packet from an input item x ∈ (0 . . .D) with size Ix, the
switch computes d pairwise independent hash functions and
updates counters, A[i,hi(x)]+ = Ix, i ∈ (1 . . .d). At the end
of measurement epoch, the controller fetches all counters.
When the controller queries the sketch for the size of an item,
Count-Min sketch hashes the item again and reports the min-
imum of the corresponding counters. As the controller can-
not query every item (e.g., every IP address), we need to
limit the set of items to query. We can keep a sketch for each
level of prefix tree (at most 32 sketches) and avoid query-
ing lower levels of the tree by using the result of queries on
upper levels (Section 4). Multiple items may collide on a
counter and cause an over-approximation error, but Count-
Min sketch provides a provable bound on the error. Using d
hash functions each mapping to w entries bounds the worst-
case error to: ecm ≤ e T

w with probability 1− e−d , where T is
the sum of packet sizes. Approaches to improve Count-Min
sketch accuracy, for example by running the least-squares
method [28] or multiple rounds of approximation over all
detected prefixes [30], add more computation overhead to
the controller, and their resource-accuracy trade-off is not
known in advance.

Many sketches have been proposed for counting distinct
items [21, 20]. We use HyperLogLog [21] as its space usage
is near-optimal, and it is easier to implement than the optimal
algorithm [23]. First, we hash each item and count the num-



ber of leading zeros in the result, say 0x. Intuitively, hash
values with more leading zeros indicate more distinct items.
By only keeping the count of maximum leading zeros seen
over a stream, M =maxi(0xi), we can estimate the number of
distinct items as 2M+1. For this, a 5-bit counter is enough for
a 32-bit hash function. We can replicate this sketch m times,
and reduce the relative error of approximation with a factor
of
√

m but with no additional hashing overhead, by using the
first p bits of hash output to select from m = 2p replicas and
the other bits to update the replica counter. For example, a
distinct counter with m = 64 replicas will require 320 bits,
have a standard deviation of the relative error of 1.04

8 , and
will use the first 6 bits of hash outputs to select a replica.

Why is sketch-based SDM resource constrained? SDM
permits multiple instances of measurement tasks execute con-
currently in a network which together require a lot of re-
sources. These tasks can be of different types and defined
on different traffic aggregates. For example, an operator
may run different types of tasks in a (virtual) network, such
as finding large flows for multi-path routing [6] and find-
ing sources that make many connections for anomaly detec-
tion [39]. Operators may also instantiate tasks dynamically
on different aggregates to drill down into anomalous traf-
fic aggregates. Furthermore, in a cloud setting, each tenant
can issue distinct measurement tasks for its virtual network;
Amazon CloudWatch already offers simple per-tenant mea-
surement services [1], and Google Andromeda allows SDN-
based network functionality virtualization for tenants [38].
Besides, modern clouds service a large number of tenants (3
million domains used AWS in 2013 [2]), so SDM with many
measurement tasks will be common in future clouds.

However, switches have limited memory and bandwidth
resources for storing these counters. Today’s switches have
128 MB SRAM capacity (HP 5120-48G EI [4]) which can
support 4-128 tasks where each task needs 1-32 MB SRAM
counters [40]. In practice, SRAM is used for other func-
tions and only a small part of it is available for measurement.
Moreover, there is limited bandwidth for the controller to
fetch counters. First, inside a switch the control data-path
that transfers counters from the ASIC to the switch CPU has
low bandwidth (e.g., 80 Mbps) [19]. Second, there is limited
bandwidth to send counters from many switches to the con-
troller. For example, 12 switches each dumping 80 Mb per
second can easily fill a 1 Gbps link. Thus, we need sketches
with fewer counters to reduce memory usage, lower network
overhead and send counters more frequently to the controller
to report in a short time-scale.

Why dynamic allocation? Prior work [40] has proposed
tuning the size of sketches based on their resource-accuracy
trade-off at task instantiation to maintain a required accu-
racy. However, these resource-accuracy trade-offs are for
the worst-case. For example, based on the formulation of
Count-Min sketch, to not detect items sending less than 9 Mbps
for a threshold of 10 Mbps in a 10 Gbps link (ecm = 1 Mbps),
we need about 27 K counters of 4 bytes for each row; with
3 rows and a prefix tree with 32 levels, this works out to
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Figure 1: Variation of traffic skew and sketch accuracy
over time

5.5 MB1. However, the total traffic T of a link may not
always reach the link capacity. In addition, Cormode [18]
showed that the bound is loose for skewed traffic (a not un-
common case in real world) and the sketch can be exponen-
tially smaller when sized for known skew. For the above ex-
ample, if the link utilization is 20% in average with a skew
factor of 1.3 [18], each row will need only 1040 counters
which require 260 KB of SRAM. Other sketches also exhibit
traffic-dependent accuracy [13, 27].

These trade-off formulations are loose because the opti-
mal resource requirement of a sketch for a given accuracy
depends on the traffic that changes over time. For exam-
ple, Figure 1a shows the skew of traffic from source IPs in
CAIDA trace [3] over time. (Our skew metric is the slope
of a fitted line on the log-log diagram of traffic volume from
IPs vs. their rank (ZipF exponent).) The skew decreases
from time 110 to 160 because of a DDoS attack. Figure 1b
shows the accuracy of heavy hitter (HH) source IP detection
of Count-Min sketch with 64 KB memory over time. Heavy
hitter detection accuracy, precision (the fraction of detected
true HHs over detected ones), decreases from 90% to 70%
for less skewed traffic, which means that the sketch needs
more counters only at this time period in order to maintain
90% accuracy. This presents an opportunity to statistically
multiplex SRAM and bandwidth resources across tasks on a
single switch by dynamically adjusting the size of sketch.

Besides, we may need sketches with different sizes on
different switches for tasks that monitor traffic on multiple
switches. For example, we may need to find heavy hitter
source IPs on flows coming from two switches (say A and
B). These switches monitor different traffic with different
properties such as skew, thus they need different number
of counters. This allows spatial statistical multiplexing: A
sketch may need more counters on switch A vs. B while
another may need more on switch B vs. A.

3. SCREAM OVERVIEW
SCREAM provides sketch-based software-defined mea-

surement with limited resources (Figure 2). It allows users

1 The number of hash functions, d, is usually fixed to 3 or 4
to simplify hardware and because of reduced marginal gains
for larger values. The total is smaller than 27K×4×3×32
because the sketches for the top layers of the prefix tree can
be smaller [14].



Figure 2: Resource allocation overview

to dynamically instantiate measurement tasks and specify a
required accuracy. Specifically, the user instantiates a task
by specifying its type, flow filter, its parameters and its ac-
curacy bound. For example, she may instantiate a heavy
hitter detection task on a five tuple flow filter <srcIP=10/8,
dstIP=16.8/16,*,*,*> that reports sources sending traffic more
than 10 Mbps with a precision (the fraction of detected items
that are true heavy hitter) of at least 80%.

SCREAM can run multiple concurrent instances of differ-
ent task types. Each task instance (henceforth, simply task)
configures counters at switches and periodically queries coun-
ters from switches. Periodically, SCREAM distributes re-
sources to each task on each switch based on the traffic ob-
served at the switch to satisfy its requirement. As a result,
tasks update the sketch parameters based on allocated re-
sources and re-configure their counters at switches. In the
following, we describe the two components of SCREAM
(tasks and dynamic resource allocation).

Tasks: Sketches can support a diverse range of measure-
ment tasks [40]. We consider three examples in this paper:

Heavy Hitter (HH): A heavy hitter is a traffic aggregate
identified by a packet header field that exceeds a specified
volume. For example, heavy hitter detection on source IP
finds source IPs contributing large volumes of traffic.

Hierarchical Heavy Hitter (HHH): Hierarchical heavy hit-
ters (HHHs), used for detecting DDoS [36], are defined by
the longest prefixes that exceed a certain threshold, θ , in
aggregate traffic volume even after excluding any HHH de-
scendants in the prefix tree [15]. For example, if a prefix
10.1.0.0/16 has traffic volume more than θ , but all the sub-
nets within the prefix have traffic volume less than θ , we
call the prefix a HHH. In contrast, if one of its subnets,
say 10.1.1.0/24, has traffic more than θ , but the rest of the
IPs collectively do not have traffic more than θ , we view
10.1.1.0/24 as a HHH, but 10.1.0.0/16 is not a HHH.

Super source and destination (SSD): A super source is a
source IP that communicates with a more than a threshold
number of distinct destination IP/port pairs. A super destina-
tion is defined in a similar way. SSDs are used for detecting
worms, port-scans, P2P super nodes or DDoS targets.

Dynamic resource allocation: At the heart of SCREAM is

its resource allocation mechanism. We use the instantaneous
accuracy of a task as its feedback for an iterative allocation
algorithm (Figure 2). Each task periodically shares its result
and counters with an accuracy estimator module. The accu-
racy estimator estimates the accuracy of current results for
resource allocation algorithm which in turn determines the
number of counters for each sketch based on those estimates.
Then tasks tune sketch parameters based on the number of
assigned counters and re-configure switches. Thus, the re-
source allocation mechanism requires two components, a
dynamic resource allocator and an accuracy estimator per
task type.

SCREAM’s resource allocator, borrowed from DREAM [33]
(see below), requires tasks to provide a global task accuracy
and local accuracies per switch, and runs parallel per-switch
resource allocators that use the maximum of global and lo-
cal accuracies as follows. If the accuracy estimate is below
the specified accuracy bound (“poor” task), it receives more
resources; these resources are taken away from “rich” tasks
whose accuracy estimate is well above their bound. The allo-
cator algorithm achieves fast but stable convergence by dy-
namically adapting the step size of resource exchange for
each task. It also contains an admission control algorithm
that rejects new tasks when necessary: without this, no task
may receive sufficient resources. However, since resource
demands for a task can change over time, resource overload-
ing can occur even without the arrival of new tasks. In this
case, the allocator assigns resources to poor tasks based on
assigned priorities, and when it cannot, it may drop tasks.

We now illustrate how the resource allocator works using
a simple example (Figure 3). We ran an experiment on two
heavy hitter (HH) detection tasks on source IP using Count-
Min sketch on a single switch. Each task monitors a chunk
of a packet trace [3] starting from time 0. Figure 3a shows
the estimated accuracy in terms of precision (the fraction of
detected true HHs over detected ones) of tasks over time and
Figure 3b shows the allocated resources per task. In the be-
ginning, both tasks get equal resources (32 KB), but task 1
cannot reach the 80% accuracy bound at time 3 while task
2 has very high accuracy. Therefore, the resource allocator
takes memory resources (16 KB) from task 2 and gives to
task 1. At time 20, we increase the skew of volume of traffic
from source IPs for task 1 and decrease it for task 2. As a
result, task 2 requires more resources to reach 80% accuracy
bound, thus its estimated accuracy degrades at time 20. The
resource allocator responds to the accuracy decrease by iter-
atively allocating more resources to task 2 (first 8 KB then
16 KB) until it exceeds the bound.

An alternative approach to design an allocation mecha-
nism would have been to find and quantify the effect of dif-
ferent traffic properties on the resource-accuracy trade-off
of each task, and run parallel measurement tasks to find the
value of traffic properties (e.g., skew, which can be used
to tighten the accuracy bound for Count-Min sketch [25]).
However, quantifying the effect of traffic properties (e.g.,
skew parameters) on the accuracy is complicated, and dy-
namically estimating them may require significant resources
[25].
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Figure 3: Resource allocation example

Relationship to DREAM [33]. SCREAM is inspired by
DREAM, our prior work on efficient and dynamic resource
management for TCAM-based measurement tasks. In par-
ticular, SCREAM deliberately reuses the dynamic resource
allocator (described above) proposed in DREAM [33]. This
reuse has the advantage that it can enable a unified frame-
work to support a variety of measurement tasks that uses
either sketches or counters. Such a framework can simplify
the configuration of measurement tasks and provide a uni-
fied interface for specifying these tasks and processing the
results. Our next step in the near future is to develop such a
unified framework.

However, SCREAM is different from DREAM in several
ways because it is sketch-based instead of TCAM-based.
First, by using sketches, SCREAM can support tasks that
cannot be supported using TCAM-based counters. For ex-
ample, in this paper, we implement the SSD task using a
Count-Min sketch and a distinct counter instead of a volume
counter (we leverage an existing technique [40, 17] for this,
but adapt the design to provide unbiased results). Also, un-
like flow-based counters, sketches do not need iterative re-
configuration. The iterative re-configuration is less accurate
for time-varying traffic because it takes multiple measure-
ment epochs to reconfigure counters (e.g., to zoom into 32
levels in IP prefix tree) [32].

Second, in SCREAM, different switches may be assigned
different-sized sketches by the dynamic allocator because
they see differing amounts of traffic. Combining different-
sized sketches is non-trivial, and we present an approach to
merge the counters from sketches of different sizes, together
with a general algorithm to use Count-Min sketch in a prefix
tree to run the three measurement task types (Section 4).

Finally, the primary enabler for dynamic resource alloca-
tion in SCREAM is the estimation of instantaneous accuracy
of a task. We present a solution that does not assume an
a priori traffic model or run parallel measurement tasks for
each of the implemented task types (Section 5).

Generality: In this paper, we build three measurement
tasks in SCREAM, which cover various important applica-
tions in data centers and ISP networks such as multi-path
routing [6], anomaly detection [24], worm detection [39],
P2P seed server detection [8], port scan [8], network provi-
sioning, threshold-based accounting, and DDoS detection [36].

Moreover, although we have implemented measurement
tasks based on Count-Min sketch and its variants, SCREAM
can support other sketches for a different resource-accuracy

Figure 4: Merging two Count-Min sketches with differ-
ent sizes

trade-off or for other measurement tasks. If a given sketch’s
accuracy depends on traffic properties, it also benefits from
our dynamic resource allocation algorithm. For example,
the error of Count-Sketch [9], that can also support our three
tasks, depends on the variation of traffic (compared to the
error of Count-Min sketch which depends on the size of traf-
fic). However, its theoretical bound is still loose for a skewed
distribution [13]. Kumar [27] proposed a sketch to compute
the flow size distribution, but the accuracy of this sketch also
depends on the traffic properties (number of flows). In order
to add those sketches to SCREAM, we need to estimate their
accuracy, which have left to future work.

4. DESIGN OF SKETCH-BASED TASKS
In SCREAM, tasks at the controller configure sketch coun-

ters at switches, fetch counters and prepare reports. In or-
der to prepare reports, tasks need to find instances of HHs,
HHHs, or SSDs. In this section, we first describe how to
approximate traffic counts for HHs and HHHs, and connec-
tion counts for SSDs using Count-Min and HyperLogLog
sketches on multiple switches. These algorithms execute at
the controller, and are specific to a given task type. Then,
we describe an algorithm independent of task type that, from
the derived counts, estimates and reports instances of HHs,
HHHs and SSDs that exceed the specified threshold.

Although there have been many sketch-based algorithms
[40], we improve upon them in the following ways. We in-
troduce novel techniques to merge sketches with different
sizes from multiple switches, leverage hierarchical grouping
with adjustable overhead to find instances of HHs, HHHs
and SSDs, and adapt the design of the SSD task to be un-
biased and provide stable accuracy. We describe these im-
provements below.

Heavy Hitter (HH): If a prefix has traffic on one switch,
we estimate traffic size by the minimum of counts from dif-
ferent rows of the counter array in the Count-Min sketch ap-
proximation algorithm (Section 2). However, a heavy hit-
ter prefix may have traffic from multiple switches. One ap-
proach [5] in this case is to simply sum up the Count-Min
sketch arrays fetched from different switches into a single ar-
ray (Anew = ∑s As for each switch s) and run the algorithms
as if there is only one sketch. However, in SCREAM, the
resource allocator sizes the sketches at each switch differ-



Figure 5: A prefix trie of source IPs where the number
on each node shows the bandwidth used by the associ-
ated IP prefix in Mb in an epoch. With threshold 10, the
nodes in double circles are heavy hitters and the nodes
with shaded background are hierarchical heavy hitters.

ently, so each sketch may have an array of different widths
and cannot be summed. For example, Figure 4 shows the
counter arrays for two Count-Min sketches with three rows
and different widths that cannot be directly summed.

A natural extension for sketches of different sizes is to find
the corresponding counter for each prefix at each row and
sum the counters at similar rows across sketches. The ap-
proximated count will be their minimum: mini(∑s As[i,hi(x)]).
For example, say an item on the first sketch maps to counters
with index 5, 7, and 4, and on the second sketch maps to 1, 3,
and 4. The approximation will be: min(A1[1,5] +A2[1,1],
A1[2,7]+A2[2,3], A1[3,4]+A2[3,4]). In Figure 4 (right bot-
tom) we connect counters with the same color/pattern to the
corresponding sum boxes to get 5 as the final result.

However, because Count-Min sketch always over-approx-
imates due to hash collisions, we can formulate a method
that generates smaller, thus more accurate, approximations.
The idea is to take the minimum of corresponding counters
of a prefix inside each sketch and then sum the minima:
∑s mini(As[i,hi(x)]). For the above example, this will be
min(A1[1,5],A1[2,7],A1[3,4])+min(A2[1,1],A2[2,3],A2[3,4])
(Figure 4, the top merging module with solid lines to counter
arrays which approximates the size as 3 instead of 5). This
approximation is always more accurate because the sum of
minimums is always smaller than minimum of sums for pos-
itive numbers. In all of this, we assume that each flow is
monitored only on one switch (e.g., at the source ToR switches).

Hierarchical Heavy Hitter (HHH): Recall that HHHs are
defined by the longest prefixes exceeding a certain threshold
in aggregate volume after excluding any HHH descendants
in the prefix tree. Figure 5 shows an example of a prefix tree
for four bits. With a threshold of θ = 10Mb, prefix 010* is
a HHH as IPs 0100 and 0101 collectively have large traffic,
but prefix 01** is not a HHH because excluding descendent
HHHs (010* and 0111), its traffic is less than the threshold.

We leverage multiple sketches to find HHHs [15]. We
need a sketch for each layer of the prefix tree to estimate
the size of prefixes at different levels. For a HHH without
any descendant HHH, the approximation function works the
same as HH detection task. However, for other HHHs, we
need to exclude the size of descendant HHHs. Thus, during
a bottom up traversal on the tree, SCREAM tracks the total
size of descendant HHHs already detected and subtracts that
size from the approximation for the current prefix [15].

Super Source/Destination (SSD): SSD detection needs to
count distinct items instead of the volume of traffic, so we
replace each counter in the Count-Min sketch array with
a distinct counter [17]. Therefore, each sketch has w× d
distinct counters; we used the HyperLogLog [21] distinct
counter because its space usage is near-optimal and it is easy
to implement [23]. However, distinct counters may under-
approximate or over-approximate with same probability, so
picking the minimum can cause under-approximation and
result in many missing items even with a large Count-Min
array. For example, suppose that there is no collision in a
Count-Min sketch, we have d distinct counters for a source
IP, and we pick the minimum, it is more likely to pick the
one that under-approximates. Figure 6b shows the recall (de-
tected fraction of true SSDs) of SSD detection given fixed
resources in simulation over a CAIDA traffic trace [3]. The
under-approximation of picking the minimum resulted in miss-
ing more than 20% of SSDs. Unfortunately this will become
worse for larger Count-Min sketches with fewer collisions.
Thus, the SSD approximation, even for a single sketch, can-
not use the minimum of corresponding counters.

To counter this bias, unlike prior work [17, 40, 22], we
pick the median instead of minimum. Then, to remove the
median’s bias towards Count-Min hash collisions, we re-
move the average error of the sketch from it in Equation 1
where A is the Count-Min sketch array of width w and T is
the sum of distinct items of prefixes. Equation 1 is unbiased
since we can interpret the over/under-approximations of dis-
tinct counters as random positive and negative updates on
the sketch and use the proof in [26].

mediani(A[i,h(x)])−T/w
1−1/w
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Figure 6: Unbiasing detection of destination IPs con-
tacted by > 200 source IPs on Count-Min sketch (w =
1320,d = 3) plus HyperLogLog (m = 16)

However, when the number of sources per destination IP
is highly skewed (e.g., in a DDoS attack) removing the av-
erage error (T/w) in Equation 1 can result in missing SSDs.
For example, Figure 6a shows the degree of super destina-
tions over time in the ground-truth where a specific destina-
tion has a large number of distinct sources from time 110
to 160. Figure 6b shows that the recall for an approach that
uses Equation 1, named Naive-med, drops during the DDoS
attack. These missed SSDs result from the fact that Equa-
tion 1 compensates for the average Count-Min collision from
every counter, but for skewed traffic a few large items that
increase average error significantly only collide with a few



1 Function approximate(prefix, sketches)
2 for i = 1 . . .d do
3 Mnew,∗ = 0
4 for s in sketches do
5 DCs,i =distinct counter in As[i,h(pre f ix)]
6 for k = 1 . . .m do
7 Mnew,k = max(Mnew,k,MDCs,i,k)

8 cest
i = hyperloglog(Mnew,∗).approximate()

9 return unbias(mediani(cest
i ))

Figure 7: Approximate function for SSD

counters. Thus, reducing this large error from every median
approximation causes an under-approximation of the total
count, and results in missing true SSDs.

Instead, we refine the average error estimate by removing
those very large prefixes from it, but must first detect them
using two steps. In the first step, we use the average error
just to detect very large prefixes, set L (as mentioned before,
this causes an under-approximation, but is still sufficient to
detect very large SSDs.). In the second round, we reduce the
adjusted average error, T−∑k∈L cest

k
w , from the medians, where

cest
k is the estimated count for item k. This results in high

recall, independent of traffic skew (Figure 6b). This does not
come at the cost of increased false positives, and SCREAM’s
precision is also high.

Multiple switches: If a prefix has traffic from multiple sket-
ches, summing the number of distinct items from different
sketches over-approximates the number of distinct items be-
cause two distinct counters may have counted similar items.
For example, two switches that forward traffic from a source
IP prefix may see traffic to a common destination IP. How-
ever, the common destination IP should only be counted
once in the degree of the source IP prefix. We can combine
two HyperLogLog distinct counters, DC1 and DC2, with m
replica counters by taking the maximum of each correspond-
ing replica counter to make a new distinct counter [21]: Mnew,k =
max(MDC1,k,MDC2,k) for k = 1 . . .m.

To leverage this, we keep a fixed number of replica in
distinct counters of different sketches and only change the
width of the array in Count-Min sketch (w) based on the al-
located resources. Again, having Count-Min sketches with
different widths, we cannot use the traditional approach of
merging distinct counters with the same index in Count-Min
counter array [22]. Instead, we find corresponding distinct
counters for each specific query in each row and merge them.

Figure 7 summarizes how we use this idea to approxi-
mate the degree of each prefix when Count-Min sketches
may have different widths. For each d rows of Count-Min
sketches, we find the corresponding distinct counters for a
prefix in each sketch (lines 2-5). Then, we merge replicas
from these distinct counters (lines 6-7) and approximate the
number of distinct items using the new replica counters sim-
ilar to a single HyperLogLog sketch [21] (line 8). Now sim-
ilar to the case of a single switch, we approximate the degree
of the SSD using the unbiased median approach (line 9).

Reporting HHs, HHHs and SSDs: So far, we have pre-
sented ways of approximating traffic volumes and connec-

1 Function createReport(prefix, output)
2 e=approximate(prefix, prefix.sketches)
3 if e≥threshold then
4 foreach child of prefix do
5 createReport(child, output)
6 updateOutput(prefix, output)

Figure 8: Generic algorithm to create output

tion counts. However, we also need an efficient way of de-
termining which IP prefixes contain HHs, HHHs or SSDs.
In the data plane of each switch, SCREAM uses Count-Min
sketches to count traffic. A single Count-Min sketch can
only approximate the count given a prefix. Exploring all
prefixes at the controller is impossible, so SCREAM uses
a hierarchy of Count-Min sketches to identify the actual pre-
fixes [14]. It employs a Count-Min sketch for each level of
prefix tree (e.g., 16 sketches for a task with flow filter of
10.5/16), where the sketch on level l (from leaves) ignores l
least significant IP bits 2. Note that to find HH/SSD IP pre-
fixes that are not exact, we can start the tree from a level > 0.

Figure 8 shows an algorithm that does not depend on the
task type. In line 2, the algorithm approximates the size
of a prefix tree node by combining multiple sketches (using
algorithms described above). Then, it traverses the prefix
tree (lines 3-6). If the approximation is above the threshold,
it goes deeper to find items for output. This algorithm re-
lies on the observation that if a prefix’s size is not over the
threshold, its ancestors sizes are not too.

For example in Figure 5, it starts from the root and goes
in the left branches until it finds heavy hitter 0000, but later
when it reaches prefix 001*, it does not need to check its
children. The updateOutput function for HH/SSD detec-
tion is simply to add the prefix for a leaf node (path from the
root in the prefix tree) to the output. However, for HHH de-
tection, we only add the prefix into output if its size remains
larger than threshold after gathering its descendant HHHs
and excluding their size.

Many techniques are proposed to identify items to query
(reverse a sketch) [16, 7, 35]. At the core, all use multi-
ple sketches and apply group testing to reverse the sketch,
but their grouping is different. We use hierarchical group-
ing [16] because it is enough for our tasks, is fast and simple
and has tunable overhead comparing to some alternatives.
For example, OpenSketch used Reversible sketch [35] with
fixed high memory usage of 0.5 MB. Our work generalizes
prior work that has used hierarchical grouping for HHs and
HHHs, but not for SSDs [14, 16].

5. ACCURACY ESTIMATION
To support dynamic resource allocation, we need algo-

rithms that can estimate the instantaneous accuracy for indi-
vidual tasks, even when the traffic for a task spans multiple
switches. In addition to informing resource allocation, our

2 It is possible to have a sketch for each g > 1 levels of the
tree but with more overhead at the controller to enumerate 2g

entries at each level. Our implementation is easily extendible
for g > 1.



accuracy estimates can give operators some understanding
of the robustness of the reports. Our accuracy estimators
discussed in this section consider two accuracy metrics: pre-
cision, the fraction of retrieved items that are true positives;
and recall, the fraction of true positives that are retrieved.

The key challenge is that we do not have an a priori model
of traffic and it takes too much overhead to understand traf-
fic characteristics by measuring traffic. Instead, our accu-
racy estimator only leverages the collected counters of the
task. There are two key ideas in our accuracy estimator: (1)
applying probabilistic bounds on individual counters of de-
tected prefixes, and (2) tightening the bounds by separating
the error due to large items from the error due to small items.

Heavy hitters: Count-Min sketch always over-approximates
the volume of a prefix because of hash collisions; therefore,
its recall is 1. We compute precision by averaging the prob-
ability that a detected HH j is a true HH, p j. We start with
the case where each HH has traffic from one switch and later
expand it for multiple switches. The strawman solution is
to estimate the probability that an item could remain a HH
even after removing the collision error of any other item
from its minimum counter. The resulting estimated accuracy
under-estimates the accuracy by large error mainly because,
for skewed traffic, a few large items make the probabilistic
bound on the error loose since the few large items may only
collide on a few counters. Our approach treats the counters
in each row separately and only uses the probabilistic bound
for the error of small undetected items.

A strawman for estimating p j. p j is the probability that
the real volume of a detected HH is larger than the threshold
θ , p j = P(creal

j > θ). In other words, an item is a true HH,
if the estimated volume remains above the threshold even
after removing the collision error. We can estimate the con-
verse (when the collision error is larger than the difference
between estimated volume and threshold (Equation 2) us-
ing the Markov inequality. To do this, we observe that each
counter has an equal chance to match traffic of every item, so
the average traffic on each counter of each row is T

w (T is the
total traffic, and w is the number of counters for each hash
function) [16]. Using the Markov inequality, the probability
that the collision exceeds cest

j − θ is smaller than T
w(cest

j −θ)
.

However, since Count-Min sketch picks the minimum of d
independent counters, the collisions of all counters must be
above the bound. Putting this together, we get Equation 3:

P(creal
j > θ) = P(cest

j − ecm > θ) = 1−P(ecm ≥ cest
j −θ) (2)

P(creal
j > θ)> 1− (

T
w(cest

j −θ)
)d (3)

Unfortunately, as Figure 9 shows, the resulting estimated
precision is far from the actual precision, which leads to in-
efficient resource allocation. The reason is that, for skewed
traffic, a few large items can significantly increase average
error T

w , but only collide with a few counters.

Our solution: separate the collision of detected HHs on each
counter. We can leverage individual counters of detected
HHs in two ways to tighten the p j estimation. First, instead

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Second

 

 

Real
SCREAM
Strawman

Figure 9: HH detection accuracy estimation for Count-
Min sketch (w = 340,d = 3)

of using the final estimated volume for a HH (cest
j ) that is

the smallest in all rows, we use the individual counters for
each hash function hi separately (cest

i, j ) that can be larger and
provide tighter bounds in Equation 4.

P(creal
j > θ)> 1−

d

∏
i=1

T
w(cest

i, j −θ)
(4)

Second, we know the counter indices for detected HHs
and can find if they collide with each other. Therefore, we
separate the collisions of detected HHs from collisions with
other small items. Using this, we can lower the estimate for
average collision traffic in the Markov inequality by remov-
ing the traffic of detected HHs, resulting in a tighter esti-
mate3. We now describe the details of this technique.

There are two cases where a detected HH is not a real HH:
(1) when detected HHs collide with each other; (2) when a
detected HH does not collide with other detected HHs, but
collides with multiple IPs with low counts, which together
inflate the traffic count above the threshold. For case (1),
we can easily check if a detected HH collides with other de-
tected HHs by checking if the index of its counter is hit by
another HH. If Bi, j is the set of other HHs that collide on the
ith counter of HH j, we just remove the estimated volume
of those HHs from the counter by using cest

i, j −∑k∈Bi, j cest
k

instead of cest
i, j . The estimated volume of HHs in set Bi, j

may be an over-approximation and removing them from cest
i, j

makes our p j estimate conservative. For case (2), we use the
Markov inequality to bound the collision of undetected small
items. However, instead of T , now we should use the traffic
of only undetected small items. Let A be the set of detected
HHs whose estimation is not affected by other HHs (no hit
on minimum counter). Replacing T with T −∑k∈A creal

k in
Equation 4, we can estimate p j in Equation 5. However,
we do not know creal

k∈A because of the over-approximations of
counts in the sketch. Thus, as an estimate, we use cest

k∈A after
reducing the average collision error of only small items from
it. Figure 9 shows that our estimation based on Equation 5
is close to the real precision, even under traffic dynamics. In
Section 6.4, we have validated that this improvement applies
across all the traces we have used in our evaluations, and that
this improvement is essential for SCREAM.

3 Cormode [18] also used this technique to find a resource-
accuracy trade-off for Count-Min sketch assuming the skew
of traffic is known, but our goal is to estimate p j for each
HH without assuming a model of traffic.



P(creal
j > θ)> 1−

d

∏
i=1

T −∑k∈A creal
k

w(cest
i, j −∑k∈Bi, j

cest
k −θ)

(5)

Multiple switches: As described in Section 3, our resource
allocator estimates a global accuracy for the task, as well as
a per-switch local accuracy [33]. It uses these to add/remove
resources from switches. Similar to the single switch case,
we compute the global precision by finding p j for each de-
tected HH.

Markov’s inequality is too loose when a HH has traffic
from a set of switches, so the single-switch accuracy esti-
mator does not work well. The reason is that the network-
wide collision (a random variable) is the sum of collisions at
individual switches (sum of random variables) [11]. How-
ever, since the collision on a sketch is independent from the
collision on another, we can replace Markov’s bound with
Chernoff’s bound [11] to get a more accurate estimation of
p j (see our technical report [34]). We still use the Markov’s
inequality to estimate precision if a HH has traffic from a
single switch.

Once we calculate p j, we compute local accuracies by at-
tributing the estimated precision p j to each switch. If a given
HH j has traffic at a single switch, the p j is only used for the
local accuracy of that switch. Otherwise, we attribute preci-
sion proportionally to each switch based on its average error
as, intuitively, the switch that has smaller average error com-
pared to others must have higher precision.

Hierarchical heavy hitters: If a detected HHH has no
descendant HHH (e.g., 0000, 010*, 0111 in Figure 5), its
p j can be easily calculated using the Markov or Chernoff
bound. However, if a detected HHH has descendant HHHs,
we cannot just apply those equations to cest

j (volume exclud-
ing descendant HHHs) as its p j depends on the p j of de-
scendent HHHs, because even if the sketch approximated
the volume of a HHH accurately, the over-approximation
of the descendant HHHs can make it a false HHH. For ex-
ample in Figure 5, if we detected 0000, 010*, and 0111 as
HHHs and over-approximated only the volume of 010* as
17, the weight for 0*** excluding descendant HHHs will be
49−40= 9 and will not be detected. Instead, we detect ****
as a HHH with volume 54− 40 = 14. In this scenario, al-
though we may have approximated the volume of **** cor-
rectly, it will be incorrectly detected as a HHH. Thus, we
need to find if the sum of over-approximations in a set of de-
scendants could make a true descendant HHH below j and
avoid j to become a true HHH.

Instead, SCREAM uses a simpler but conservative approach.
First, we notice that in the worst case, the over-approximated
traffic has been excluded from one of children of the detected
HHH. For each child prefix, we check if these over-approxi-
mations could make it a HHH. If any child with a new vol-
ume becomes HHH, the parent cannot be, so as a heuristic,
we halve p j. Second, we find a conservative bound for the
over-approximations of each descendant HHH and add them
up instead of going through the probability distribution of
the sum of over-approximations. The over-approximation

error bound, say êcm
D( j), for each descendant HHH of j, D( j),

is the upper bound on its error, ecm
D( j): P(ecm

D( j) < êcm
D( j)) >

0.1. 4 We find this upper bound using Markov’s inequality
for HHHs originated from a single switch and Chernoff’s
bound otherwise. For example, Equation 6 derived from
Equation 5 shows the maximum error that a descendant HHH
at a single switch at level l can have while keeping p j ≥ 0.1.

ecm
D( j) ≤

T −∑k∈Al
creal

k

w d
√

0.9
(6)

Multiple switches: For the global accuracy, we just replace
the Markov inequalities in HH tasks and Equation 6 with
Chernoff’s bound. Finding the local accuracy on each switch
is similar to HH with one difference: when the p j of a HHH
decreases because of its descendants, we need to consider
from which switch the data for descendants come and assign
lower accuracy to them. So in these cases, we also consider
the average error of sketches per descendant for each switch
and attribute the accuracy proportionally across switches.

Finally, we have found in our experiments (Section 6)
with realistic traffic that, for HHH, recall is correlated with
precision. Our intuition is that because the total size of de-
tected HHHs is smaller than T [15] and no non-exact HHH
prefix can have a size ≥ 2θ [33], detecting a wrong HHH
(low precision) will also be at the cost of missing a true HHH
(low recall).

Super source or destination: The p j of a SSD depends on
both the distinct counter error (edc) and hash collisions (ecm)
because their errors add up [22]. For a false positive SSD, j,
that has counter cest

i, j for ith hash function, the error, edc
i, j +ecm

i, j
must have been greater than cest

i, j −θ ′ where θ ′ is computed
based on the threshold θ and our version of Equation 1 (see
our technical report [34]). If the SSD has d′ ≤ d such coun-
ters (remember we choose median instead of minimum), p j
is computed using Equation 7. We can compute p j, based
on the individual error distributions of Count-Min sketch
and the distinct counter (see formulations in the technical re-
port [34]). The error of HyperLogLog sketch has the Gaus-
sian distribution with mean zero and relative standard devi-
ation of 1.04/

√
m when it has m replica counters [21]. The

collision error because of Count-Min sketch is also bounded
using Markov inequality as before.

P(creal
j > θ

′) = 1−
d′

∏
i=1

P(edc
i, j + ecm

i, j ≥ cest
i, j −θ

′) (7)

In contrast to HH tasks, the recall of SSD is not 1 because
the distinct counters can under-approximate. However, the
probability of missing a true SSD can be calculated based
on the error of the distinct counter [22]. The error of Hyper-
LogLog distinct counter depends on the number of its replica
counters, and we can configure it based on the user require-
ment just at the task instantiation.

Multiple switches: We merged distinct counters on differ-
ent switches into one distinct counter for each row of Count-
Min sketch. Thus, for SSDs, accuracy estimation on mul-
4 In practice, we found 0.1 a reasonable value.



tiple switches is the same as one switch. To compute local
accuracies, we use the average error of sketches from differ-
ent switches to attribute the computed global accuracy, p j,
proportionally across switches.

6. EVALUATION
In this section, we use simulations driven by realistic traf-

fic traces to show that SCREAM performs significantly bet-
ter than OpenSketch, and is comparable to an oracle both on
a single switch and on multiple switches.

6.1 Evaluation setting
Simulator: Our event-based simulator runs sketches on 8
switches and reports to the controller every second. Tasks
at the controller generate task reports and estimate accuracy,
and the resource allocator re-assigns resources among tasks
every second. The reject and drop parameters of the resource
allocator are set the same as DREAM [33]. The resource al-
locator is scalable to more switches, and the average number
of switches that a task has traffic from is the dominating fac-
tor for controller overhead [33]. Therefore, we make each
task to have traffic from all 8 switches and put the evaluation
for more switches for future work.

Tasks and traffic: Our workload consists of three types
of tasks: HHs, HHHs and SSDs. In a span of 20 minutes,
256 tasks with randomly selected types appear according to
a Poisson process. The threshold for HH and HHH tasks
is 8 Mbps and the threshold for SSD tasks is 200 sources
per destination IP. We choose 80% as the accuracy bound
for all tasks since we have empirically observed that to be
the point at which additional resources provide diminishing
returns in accuracy. Each task runs for 5 minutes on a part
of traffic specified by a random /12 prefix. We use a 2-hour
CAIDA packet trace [3] from a 10 Gbps link with an average
of 2 Gbps load. Tasks observe dynamically varying traffic as
each task picks a /4 prefix of a 5-min chunk of trace and
maps it to their /12 filter. Thus, our workload requires dy-
namic resource adjustment because of traffic properties vari-
ations and task arrival/departure. For scenarios with multiple
switches, we assign /16 prefixes to each switch randomly
and replay the traffic of a task that matches the prefix on
that switch. This means that each task has traffic from all
8 switches. In a data center, SCREAM would monitor traf-
fic on the source switches of traffic (the ToRs), thus network
topology is irrelevant to our evaluation.

Evaluation metrics: The satisfaction rate is the percentage
of task lifetime for which accuracy is above the bound. We
show the average and 5th% for this metric over all tasks. The
5th% value of 60 means that 95% of tasks had an accuracy
above the bound for more than 60% of their lifetime: it is im-
portant as a resource allocator must keep all tasks accurate,
not just on average. The drop ratio shows the percentage of
tasks that the SCREAM resource allocator drops to lower the
load if it cannot satisfy accepted tasks, and the rejection ratio
shows the ratio of tasks that had been rejected at instantia-
tion in each algorithm. These metrics are important because
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Figure 10: Comparison for OpenSketch (different rela-
tive error%) and the oracle at a single switch

a scheme can trivially satisfy tasks by rejecting or dropping
a large fraction of them.

Comparison with OpenSketch: OpenSketch [40] allo-
cates resources to a task based on worst-case traffic to reach
a given relative error at a single switch. To bound the error
to x% of the threshold θ on a HH/HHH detection task that
has an average traffic of T , it configures a Count-Min sketch
with w = eT

xθ
. For example, if a task has 128 Mbps traffic,

a sketch with w = 435 and d = 3 can guarantee that the rel-
ative error is lower than 10% of the threshold θ = 1 MB
with probability 1− e−3 = 0.95. In our experiments, we fix
the number of rows, d, to 3 and find w based on the error
rate. For SSD detection, OpenSketch solves a linear opti-
mization to find the best value for distinct counter parameter
(m) and Count-Min sketch width (w) that minimizes the size
of sketch [40].

At task arrival, OpenSketch finds the required amount of
resources for the relative error guarantee and reserves its re-
sources if there is enough free resources; otherwise, it rejects
the task. We run OpenSketch with a range of relative errors
to explore the trade-off between satisfaction and rejection.
OpenSketch was originally proposed for the single-switch
case, so for comparison on multiple switches, we propose
an extension as follows. We run a separate OpenSketch al-
locator for each switch and if a task cannot get resources on
any switch it will be rejected. However, setting the resources
based on the worst case traffic for all switches would require
too many resources as some tasks may have most of their
traffic from a single switch. Therefore, given the total traffic
T for a task, we configure the sketch at each switch based on
the average traffic across switches (T/8).

Comparison with Oracle: We also evaluate an oracle that
knows, at each instant, the exact resources required for each
task in each switch. In contrast, SCREAM does not know
the required resources, the traffic properties or even the error
of accuracy estimates. We derive the oracle by actually exe-
cuting the task, and determining the resources required to ex-
ceed the target accuracy empirically. Thus, the oracle always
achieves 100% satisfaction and never drops a task. It may,
however, reject tasks that might be dropped by SCREAM,
since the latter does not have knowledge of the future.

6.2 Performance at a single switch
SCREAM supports more accurate tasks than OpenSketch.
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Figure 11: Comparison for OpenSketch (different rela-
tive error%) and the oracle at multiple switches

Figure 10 compares SCREAM to OpenSketch with three dif-
ferent relative error percentages for a combination of differ-
ent types of tasks over different switch memory sizes 5. We
ran the experiment 5 times with different task arrival pat-
terns and show the error bars in Figure 10b which are very
tight. Note that OpenSketch uses the worst-case guarantee
and even a relative error of 90% of threshold can result in
high satisfaction. SCREAM has higher satisfaction rate than
OpenSketch with high relative error (90%), but its rejection
rate is lower. SCREAM can support 2 times more tasks with
comparable satisfaction (e.g., the curve 50% error on switch
capacity of 1024 KB). Finally, OpenSketch needs to reject
up to 80% of tasks in order to get much higher satisfaction
than SCREAM (in 10% relative error curve).

SCREAM can match the oracle’s satisfaction for switches
with larger memory. For switches with larger memory,
SCREAM can successfully find the resource required for each
task and reach comparable satisfaction as the oracle while re-
jecting no tasks (Figure 10). For switches with smaller mem-
ory, SCREAM has similar rejection rate as the oracle, but its
satisfaction rate is smaller than the oracle. The reason is that,
in this case, SCREAM needs to dynamically adjust task re-
sources over time more frequently than for larger switches
and waits until tasks are dropped, during which times some
tasks may not be satisfied.

6.3 Performance on multiple switches
Figure 11 shows that SCREAM can keep all task types

satisfied. However, OpenSketch either has high rejection for
strict error guarantee that over-allocates (OS_10), or cannot
keep tasks accurate for relaxed error guarantees that admit
more tasks (OS_50, OS_90). Note that the satisfaction of
OpenSketch for multiple switches is lower than its satisfac-
tion on a single switch especially for 5th% because OpenS-
ketch uses the error bounds that treat every switch the same.
(OpenSketch is not traffic aware, and cannot size resources
at different switches to match the traffic). As a result, it ei-
ther sets low allocation for a task on all switches and reaches
low satisfaction or sets high allocation and wastes resources.
However, SCREAM can find the resource requirement of a
task on each switch and allocate just enough resources to
reach the required accuracy. Our experiments for each in-

5 Switch memory size and network bandwidth overhead are
linearly related and both depend on the number of counters
in each sketch.
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Figure 12: Changing skew for HH detection at multiple
switches with capacity 64 KB

dividual task type, described in a technical report [34], also
show the superiority of SCREAM over OpenSketch.

Like the single switch case, SCREAM can also achieve a
satisfaction comparable to the oracle for multiple switches
(Figure 11a). In Figure 11b, SCREAM has a lower rejection
rate than oracle for small switches but still has no drop. This
is because SCREAM does not know the future resource re-
quirements of tasks, thus it admits them if it can take enough
headroom of free resources from highly accurate tasks. But
if later it cannot support them for a few epochs, it drops them.
Thus, SCREAM can tolerate tasks to be less accurate for a
few epoch and does not reject or drop them. However, the
oracle is strict and rejects these tasks at task instantiation;
hence, it has higher rejection.

SCREAM supports more accurate tasks than OpenSketch
over different traffic traces. Above, we showed SCREAM’s
superior performance for tasks with different traffic traces.
Now, we explore the effect of traffic skew by changing the
volume of traffic from each source IP at each second: Recall
that the frequency (denoted by volume) of elements (source
IPs) of rank i in ZipF distribution with exponent z is de-
fined by i−z. Thus to change the ZipF exponent to s× z,
it is enough to raise to the power of s the traffic volume from
each source IP in each measurement epoch. Note that we
keep the total traffic volume the same by normalizing the
traffic volume per source IP by the ratio of new total volume
over old total volume. Figure 12 shows that SCREAM can
keep tasks satisfied in a wide range of skew. For example, if
we reduce the skew to 60%, the mean (5th%) of satisfaction
is 98% (92%) and no task is rejected or dropped. However,
as OpenSketch considers the worst case irrespective of traf-
fic properties, it either ends up with low satisfaction for less
skewed traffic (OS_50, OS_90) or over-provisioning and re-
jecting many tasks (OS_10).

6.4 Accuracy estimation
SCREAM’s superior performance requires low accuracy

estimation error. Our experiments show that our accuracy
estimation has within 5% error on average. Although we
define accuracy based on precision, SCREAM achieves high
recall in most cases.

SCREAM accuracy estimation has low errors. We cal-
culated the accuracy estimation error (the percentage dif-
ference of the estimated accuracy and the real accuracy) of
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Figure 13: HHH satisfaction on multiple switches
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Figure 14: Accuracy estimation error

tasks for the single switch and multiple switches cases. Fig-
ure 14 shows that SCREAM can estimate the accuracy of
tasks with about 5% error on average. As an aside, using the
strawman accuracy estimator for HH detection (Section 5),
resulted in about 15%(40%) error in average (std) and forced
SCREAM to reject or drop all tasks in this scenario.

The error of our accuracy estimator varies across different
task types but goes down for switches with larger capacity.
The reason is that the error of our accuracy estimators de-
creases for higher accuracies and with larger switches more
and more tasks can reach higher accuracies. We found that
the cases with high error in accuracy estimation usually only
have very few detected items that are close to the threshold.
For such items with small margin over the threshold, Markov
inequality is loose, resulting in error in accuracy estimation.

Tasks in SCREAM have high recall. Figure 13b shows
that the satisfaction of HHH detection tasks based on recall
is higher than that of OpenSketch. This is because the recall
of HHH detection is correlated with its precision (see Sec-
tion 5). Hence, the curves for satisfaction based on recall
(Figure 13b) are similar to the curves for satisfaction based
on precision (Figure 13a). As mentioned in Section 5, the
recall of HH detection is always 1, and the recall for SSD
detection depends on the number of replica counters in the
distinct counter. In our experiments, the average recall was
above 80% for all switch sizes.

7. RELATED WORK
Sketch-based measurement on individual tasks: There
have been many works on leveraging sketches for individual
measurement tasks. Some works propose sketch-based mea-
surement solutions on a single switch for HH [14], HHH [15],
and SSD [17]. Other works [5, 22] provide algorithms to
run sketches on multiple switches with a fixed sketch size on
each switch. Instead, SCREAM provides efficient resource
allocation solutions for multiple measurement tasks on mul-

tiple switches with different sketch sizes at these switches.

Resource allocation for measurement tasks: Most re-
source allocation solutions focus on sampling-based mea-
surement. CSAMP [37] uses consistent sampling to dis-
tribute flow measurement on multiple switches for a single
measurement task and aims at maximizing the flow cover-
age. Volley [31] uses a sampling-based approach to monitor
state changes in the network, with the goal of minimizing the
number of sampling. Payless [12] decides the measurement
frequency for concurrent measurement tasks to minimize the
controller bandwidth usage, but does not provide any guar-
antee on accuracy or bound on switch resources.

OpenSketch [40] provides a generic data plane that can
support many types of sketches with commodity switch com-
ponents. It leverages the worst-case accuracy bounds of
sketches to allocate resources on a single switch for mea-
surement tasks at task instantiation. On the other hand, SCRE-
AM dynamically allocates sketch resources on multiple swit-
ches by leveraging the instantaneous accuracy estimation of
tasks, and thus can support more tasks with higher accuracy.

DREAM [33] focuses on flow-based counters in TCAM,
and dynamically allocates TCAM resources to multiple mea-
surement tasks to achieve their given accuracy bound. DRE-
AM develops accuracy estimators for TCAM-based zoom-
in/out algorithms, and its paper’s evaluations show that DRE-
AM is better than simple task-type agnostic schemes such as
equal TCAM allocation. In contrast, SCREAM explores the
accuracy estimation for sketch-based tasks, where the sketch
counters are not accurate compared to TCAM counters be-
cause of random hash collisions. We show that SCREAM
supports 2 times more accurate tasks than a task-type aware
allocation, OpenSketch [40], and has comparable performance
as an oracle that knows future task requirements.

8. CONCLUSION
Sketches are a promising technology for network mea-

surement because they require lower resources and cost with
higher accuracy compared to flow-based counters. To sup-
port sketches in Software-defined Measurement, we design
and implement SCREAM, a system that dynamically allo-
cates resources to many sketch-based measurement tasks and
ensures a user-specified minimum accuracy. SCREAM es-
timates the instantaneous accuracy of tasks to dynamically
adapt to the required resources for each task on multiple
switches. By multiplexing resources among network-wide
measurement tasks, SCREAM supports more accurate tasks
than current practice, OpenSketch [40]. In the future, we
plan to add more sketch-based tasks such as flow-size distri-
bution and entropy estimation.
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